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ABSTRACT

Design sensitivity analysis and optimization of built-up structures

are formulated, analyzed, and solved numerically. A variational

approach is used to incorporate both finite dimensional and distributed

state and design variables in the sameenergy equation. Kinematic and

natural boundary conditions at the interfaces between structural

componentsof built-up structures are defined. Variation of the energy

equation with the material derivative idea from continuum mechanics and

introduction of an adjoint variational equation yield design sensitivity

vectors and functions with respect to conventional and shape design

variables. A unified methodof shape design sensitivity analysis for

static and eigenvalue problems, to complement the finite element method

of structural analysis is developed. Standard shape design sensitivity

forms are derived for structural componentsand may be applied to

various kinds of built-up structures to obtain design sensitivity forms

at the interfaces between structural componentsof built-up

structures. This method provides potential for shape optimization of

complex built-up structures. Numerical considerations for design

sensitivity analysis and optimization are investigated. A basic study

is carried out to check numerical accuracy of calculations by the finite

element method. A characteristic function is introduced to treat stress

constraints in finite dimensional shape optimization. Special attention

is given to calculating shape design sensitivities for stress

ii



constraints on elements that are adjacent to interfaces. Results of

design sensitivity analysis and the related numerical considerations are

used with a linearization method for iterative optimal design. A truss-

beam-plate built-up structure is presented to illustrate use of the

method.
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CHAPTER 1

INTRODUCTION

1.1 Purpose, Motivation, and Scope

The research reported herein deals with variational methods of

design sensitivity analysis and finite element numerical methods for

iteratlve optimization of built-up structures, taking advantage of

distributed parameter structural theory.

During the past decade matrix and finite element methods of

structural mechanics have been used with nonlinear programming methods

of optimization to create numerical methods for optimizing structures

[1,2]. Recently, developments in distributed parameter structural

optimization show rather clearly [3] that the unified variational theory

of structural boundary-value problems can be used in design sensitivity

analysis and optimization. Rigorous and practically computable results

for structural components (beams, plates, plane elastic solids, and

three dimensional elastic solids) have been demonstrated and used to

solve component optimization problems [3].

The dichotomy between matrix and distributed parameter approaches

to structure optimization is particularly evident when one considers

complex built-up structures that consist of interconnected truss, beam,

plate, shell, and other components. Virtually, all aircraft, vehicles,

machines, and other mechanical structures are made up of combinations of

a variety of such structural components. The matrix/finlte element



approach is extendable to treat such classes of structures, which has

been done to a limited degree in the literature. No attempt, however,

has been made to develop a distributed parameter theory of structural

optimization for built-up structures.

The principal objective of this research is to extend the theory of

single component, distributed parameter design-shape optimization to

treat b_ilt-up structures that are composed of interconnected

components. Attention is restricted in this research to linear

structural mechanics. The variational formulation, in the case of

individual structural components, can be rigorously related to a virtual

work or energy principle in mechanics. This result allows direct

extension of energy ideas used in matrix methods to a distributed

parameter formulation of built-up structures.

The approach taken in this research begins with an energy

characterization of structural performance, namely Hamilton's

Principle. Hamilton's Principle results in a variational formulation

of the governing structural equations that is employed for design

sensitivity analysis. Strong elllptlclty properties of energy bilinear

forms have been proved for individual structural components [4],

yielding existence and uniqueness results for the associated variational

equations and forming the foundation for a rigorous proof of

dlfferentlabillty of structural response with respect to design

variables and shape. These mathematical properties are presumed to be

satisfied, justifying use of direct variational analysis techniques that



were rigorously developed in individual structural components [5] for

design sensitivity analysis of built-up structures.

The second principal objective of this research is to develop a

unified shape design sensitivity analysis method to demonstrate

substantial theoretical and computational advantages over previously

used shape design sensitivity analysis methods for structural

components. These new results are used in applications for optimal

design of various kinds of built-up structures. The shape design

sensitivity method developed follows directly from energy methods of

solid mechanics and the material derivative idea of continuum

mechanics. The result is a theory that can be stated almost completely

in terms of concepts of mechanics, .or req,J_r!ng a detailed knowledge of

functional analysis, even though such theory provides rigorous

Justification of these methods.

The final objective of this research is finite element

implementation of the formulation developed. Finite element theory for

built-up structures and variational equation theory [6] guarantee

validity of the resulting finite element models.

The next section of this chapter presents a literature survey of

topics and problems related to built-up structural optimization.

Chapter 2 presents general distributed parameter theory for design

sensitivity analysis of built-up structures.

With the variational equations and the material derivative idea

from continuum mechanics for shape variations, static and elgenvalue

design sensitivity analysis by the adJolnt variable method on a variable
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domain are carried out in Chapter 2. Chapter 3 presents a unified

method for shape design sensitivity analysis for built-up structures,

based on the formulation derived in Chapter 2 and taking advantage of

direct application of design sensitivity forms to the various kinds of

built-up structures. The interface conditions between structural

components and the shape design sensitivity forms for basic built-up

structural models involving beams, plates, and plane elastic solids are

summarized.

Numerical considerations related to design sensitivity analysis and

optimization are discussed in Chapter 4. In Chapter 5, a truss-beam-

plate built-up structure is used to illustrate the numerical feasibility

of design sensitivity analysis and optimization, through Iteratlve

optimization of a complex built-up structure. Finally, Chapter 6

presents a discussion and conclusions of the present study.

1.2 Literature Survey

One of the common means of achieving a high strength-to-weight

ratio is to combine structural components as built-up structures. A

substantial literature has developed on optimization of built-up

structures.

One of the first treatments of built-up structure optimization was

considered by Catchpole [7], who developed a method enabling rapid

determination of the optimum cross-sectlonal dimensions of a compression

surface having an unflanged integral stiffener. Symonds [8] presented

the minimum weight design of a simply supported, transversely stiffened

plate that is loaded in shear.



Problems of optimum design of stiffened cylinders or cylindrical

shells, under either compression, lateral pressure, or combined axial

compression and lateral pressure, with various types of stiffeners were

considered by Nickel and Crawford [9], Crawford and Burns [I0], Cohen

[11], Burns and Almroth [12], Gerard and Papirno [13], Burns and Skogh

[14], Burns [15-18], Gerard [19], Lakshmikantham and Becker [20], Block

[21], and Shideler et al. [22].

In many of the earlier papers [9-22], optlmization was achieved by

parametric studies. This is a classical design method that is integral

to the welght/strength and structural index concepts of minimum weight

structural design [23]. Afterwards, optimal design has been achieved

by the mathematical programming approach that was pioneered by Schmi_

[24]. For this approach, many algorithms are available that are

guaranteed (theoretically) to produce at least a local optimum design.

Structural synthesis of stiffened cylinders or cyllndrlcal shells

was considered in several papers [25-33]. Kicher [25] treated the

problem by using a constrained gradient method. Schmlt et ai.[26], and

Morrow and Schmlt [27] applied a Fiaco-McCormlck type penalty function

formulation to transform the basic inequality constrained minimization

problem into a sequency of unconstrained minimization problems. Pappas

and Amba-Rao [28] used a direct search algorltm with an interior-

exterior penalty function formulation. Thornton [29] used the exterior

penalty function method with least-square approximation. Jones and

Hague [30] applied a different optimization search technique and



extended the work of Ref. 27. Pappas and Allentuch [31-33] utillzed a

direct search design algorithm and the golden search.

Many other papers considered minimum weight design of built-up

structures, under a variety of loading conditions, constraints,

configurations, and with a variety of optimization techniques [34-61].

Stroud and Sykes [34] showed the effect of slight merldional

curvature. Lakshmlkantham and Gerard [35] showed the effects of ring

stiffeners of the isotroplc skin. Kicher and Chao [36] treated the

problem of stiffened fiber composite cylinders with the penalty function

technique of Fiaco and McCormick. Welght optimization of reinforced

spherical shells under external pressure was examined by Manevlch and

Kaganov [37]. An eccentrically stiffened wide panel under compression

war investigated by Tvergaard [38].

An indlrect_ trial and error design procedure for axially

compressed cylinders has been proposed by Rehfleld [39]. Pappas and

Allentuch [40] presented a procedure for circular, cylindrical, 'T'

frame (ring) reinforced, submersible shells. Simltses and Aswanl [41]

found optimum stiffened cylinders that can safely carry a given

hydrostatic pressure. Pappas and kUentuch [42] considered the pressure

hull optimization using a general instability equation. Simltses and

Ungbhakorn [43,44] have produced designs of axially compressed cylinders

with various stiffeners. Kunoo and Yang [45,46] carried out design of

cylindrical shells with different stiffeners, subjected to uniform axial

compressive or bending load, by the method of steepest descent. This

problem was also considered by Pappas and Moradl [47], by direct



optimization without use of approximation or limitations in the number

of stiffener sizes.

Richards [48] considered optimum design of stiffened webs with

supplementary skin stabilization. S_reide et al. [49] studied the

design of stiffened plates in an ultimate llmit state. Libai [50]

presented design of a square plate with a single, eccentric, blade-type

stiffener that is subjected to compressive edge loads.

MaJumder and Thornton [51] presented a method to produce efficient

piecewise uniform stiffened shells of revolutlon. Simitses and Girl

[52] presented a design procedure of stiffened circular cylindrical

shell geometries, subjected to pure torsion. Later they extended the

design problem, combined with axial compression, with and without

lateral pressure [53]. Design of stiffened cylindrical panels was

considered by Toakley and Williams [54] for compression loading and by

Simitses and Sheinman [55] for combined load.

Bronowickl et a1.[56] presented the design of a shell with T-rlng

stiffeners subjected to a vibration constraint. Patnaik and Sankaran

[57] treated stiffened cylindrical panels with constraints on natural

frequencies, in the presence of initial stresses, using unconstrained

minimization techniques and a finite difference scheme for design

sensitivity analysis. Dobbs and Nelson [58] presented a method with

fracture constraints that is capable of determining a fail-safe design,

which is a logical extension of present structural optimization methods

which include stress, dlsplacement, buckling, frequency, and aeroelastlc

flutter constraints. Rao and Reddy [59] considered design optimization



of axially loaded, stiffened cylindrical shells for minimum mass with

natural frequency, local and overall buckling strengths and direct

stress constraints.

Simltses and Shelnman [60] solved the problem of optimizing

stiffened, thin, clrcular cyllndrlcal shells under uniform axial

compression against general instability, in the presence of initial

geometric imperfection. Patel and Patel [61] made an attempt to obtain

a design of stiffened cyllndrlcal shell under pure bending load, using a

penalty function technique and complex method of Box.

However, all of these problems were solved by a matrlx/flnlte

element approach. The main emphasis of this research is on development

of a distributed parameter structural theory for design sensltlvi_y

analysis and optimization, a unified method for shape design sensitivity

analysls, and a method for finite element Implementatlon of formulations

achieved for numerlcal feasibility.



CHAPTER 2

DESIGN SENSITIVITY ANALYSIS OF BUILT-UP STRUCTURES,

BASED ON DISTRIBUTED PARAMETER THEORY

2.1 Introduction

Distributed parameter structural theory [3,5] is applied here for

design sensitivity analysis of built-up structures, for both static and

elgenvalue problems with design variable and shape variations.

Variational equations for structural components are obtained in Section

2.2 and a general varlational formulatlon for built-up structures is

presented in Section 2.3. For shape variation, the mater_a! derivative

idea of contlnuummechanlcs is introduced in Section 2.4. In Sections

2.5 and 2.6, static and elgenvalue design sensitivity analysis for both

design and shape variations, respectively, are presented, using the

varlatlonal/structural equations. The basic theory is originated from

Ref. 5, where the reader may find more technical and mathematlcal

developments.

2.2 Variational Equations of Structural Components

In order to be specific about properties of built-up structures, it

is helpful to formulate variational equations for several structural

components in a unified way, prior to delving into design sensitivity

analysis. Three basic problems are defined in this section and are used

in later sections. It is shown that the basic forms of all problems are

identical.
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2.2.1 Beam

Bending, torsion, axial deformation, and vibration of a beam are

considered.

is given as

For bending, the boundary-value problem, in operator form,

Az _ (EIZxx)xx " f

_z(o) = _z(_) = 0

, x e (0, £) (2.1)

(2.2)

where E Is Young's Modulus, I is moment of inertia of the beam cross

section, f e CI[o,L] Is distributed load, and y is a boundary operator

that gives the projection of structural dlsplacements and perhaps their

derivatives onto the exterior boundary.

For torsion, the differential equation for the angle of twist 8

per unit length of the beam is [62]

_ke -- -GJe =, T , x e (0,£) (2.3)
XX

yo(o) = yo(_) = o (2.4)

where O is shear modulus, J is torsion constant [63], and T is applied

torque.

For axial deformation, the boundary-value problem, in operator

form, is given as

Az _ -(EAZx) x " , x e (0,_) (2.5)

7z(O) = 7z(£) = 0 (2.6)
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C1where _ • [0,£] is axial load and A is cross-sectlonal area of the

beam.

For vibration, the formal operator elgenvalue problem for bending

is

Ay - (ElYxx)xx = _pAy = _By

ry(o) = _y(_) = o

, x • (0,_) (2.7)

(2.8)

where _ = m2, m is natural frequency and p is material density.

These boundary-value problems may be written in equivalent

variational forms, essentially the principle of virtual work, by

multiplying Eqs. 2.1, 2.3, and 2.5 by arbitrary virtual displacements

that are consistent with the boundry conditions of Eqs. 2.2, 2.4, and

2.6, respectively, and integrating by parts to obtain the variational

equations

f_ ElZxxZxxdX = f_ fzdx _ _(z) (2.9)a(z,_)

for all z E Z = {z • B2(O,£):z satisfies kinematic boundary

conditions} for bending,

for all 0 e Z = {z • Hl(O,g):z satisfies kinematic boundary conditions}

for torsion [64], and

a(z,;) _ I_ EAZx;xdX = I_ fzdx _ £(;) (2.11)
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- HI(ofor all z e Z = {z e ,g): z satisfies kinematic boundary conditions}

for axial deformation.

Similarly, the variational form for the eigenvalue problem is

a(y,y) _ f: ElYxxYxx:dX = _f_ pAyydx = _d(y,y) (2.12)

- H2(Ofor all y e Z ffi{z e ,g): z satisfies kinematic boundary

conditions}.

One can obtain the variational elgenvalue equations for torsion and

axial deformation. Here, Hi(_) represents a Sobolev space. For a

discussion of Sobolev spaces, the reader is referred to Refs. 5, 65, 66,

and 67. In beam stiffened built-up structures, the torsional stiffness

effect of beams is generally considered, making use of the terms

presented here.

2.2.2 Plate

Bending and vibration of a plate of variable thickness

h(x) _ h0 > 0 as shown in Fig. 2.1 are now considered. The operator

form of the boundary-value problem Is

Az = f , x • fl (2.13)

Yz = 0 , x • r (2.14)

where the operator A is defined formally as

Az = [D(u)(Zll+VZ22)]ll + [D(u)(z22+VZll)]22 + 2(l-v)[D(U)Zl2]12

(2.15)
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where a subscript i denotes the operation
_xi '

D(u) = Eh3/[12(l - 2)], E is Young's modulus, u is Polsson's ratio,

and y is a boundary operator.

The variational equation for the plate is [5]

u _ m

a(z,z) =- fj'_ D(u)[zllZll + _z22zll + z22z22 + _ZllZ22

+ 2(l-_)z12z12]d_ = ff_ fzd_ = £(z) (2.16)

- H2(for all z e Z = {Z e _): z satisfies kinematic boundary conditions}

for static response. If the thickness h is constant, then the operator

equation is simplified to

Az E DV4z = f , x e G (2.[7)

yZ"0 , X er (2.18)

CIwhere f e (_) and _ is the closure of _ [66].

For vibration, the formal operator form of the elgenvalue problem

is simplified to

Ay = DV4y = _phy = _y , x e (2.[9)

yy = 0 , x e r (2.20)

where _ = 2, _ is natural frequency, and p is material density.

The variational equations are [5]

a(z,z) =-Dff n (_z)C_z)dG =ffn fzdG -= £(z) (2.21)
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for all z e Z, for static response, and

a(y,y) = _ff_ phyyd_ =- _d(y,y)

for all y e g , for the eigenvalue problem.

(2.22)

2.2.3 Linear Elasticity

The three dimensional linear elasticity problem for a body of

arbitrary shape, shown in Fig. 2.2, is considered.

defined as

ciJ.z.( ) _-(z I z ) , l,J = 1,2,3 , x (2.23)

[z 1 2 31Twhere z ffi , z , z is displacement. The stre_.q-_tra_n relation

(generalized Hook's law) is given as [68]

3

oiJ(z) = _ DiJkgck_(z) , i,J,k,£ = 1,2,3 , x _ _ (2.24)

k,A=l

where D is the elastic modulus tensor, satisfying D ijk£= Djik£

and D ijk£ = DljAk, i,J,k,A = 1,2,3. The equilibrium equations are [68]

3

I =lj(.) . Fi i - 1,2,_ x _
JffilJ

with boundary conditions

i r0z = 0 , i = 1,2,3 , x e

The strain tensor is

(2.25)

(2.26)

i 3 r2Tn (z) = _ _iJ(z)nJ = T i, i = 1,2,3, x e (2.27)

j=l

and the boundary segment rI is traction free, where nj is the Jth
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x!

Z

Figure 2.1 Clamped Plate of Variable Thickness h(x)

x3

0

C 2

-.-x2

Figure 2.2 Three Dimensional Elastic Solid
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component of the outward unit normal, F = [FI,F2,F3]T • [CI(R)] 3, and

T- [TI,T2,T3]T• [cl(r)]3.

The variational equation for this problem is [5]

3

a(z,'z)--"fff_[ y.
i,J=l

oiJ (z) eli(z) ]dR

3 3

= fffa [ Y"Fi_i]d_ ÷ ffr [ y- Tizi]dr = _(z)
i=l i=1

(2.28)

which must hold for all z • Z, where Z is the space of kinematically

admissible displacements; i.e.,

Z = (z • [HI(_)] 3 i r0: z = 0, i = 1,2,3 , x • } (2.29)

For plane elasticity problems in which either all components of

stress in the x3-direction are zero or all components of strain in the

x3-direction are zero, Eq. 2.28 remains valid, with limits of summation

running from I to 2 and an appropriate modification of the generalized

Hook's law of Eq. 2.24.

2.3 Variational Equations of Built-Up Structures

Consider a general structure that is made up of a collection of

structural components, for which each component, except truss elements,

occupies a domain Ri with boundary ri, iffil,2,..,r, and the components

are interconnected by kinematic constraints at their boundaries. That

is, structural components are interfaced by Joints that connect them to

adjacent components and constrain admissible displacement fields at the

interfaces. Displacements in structural components are said to be
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kinematically admissible if they satisfy kinematic constraints at the

joints. The definition of kinematic constraints at each interface

depends on the nature of the components connected by the Joint. The

axial displacement of the end of a truss component, for example, must be

equal to the projection of the displacement of the point of attachment

in an adjacent component, along the axis of the truss component. In the

case of a beam component, kinematic boundary conditions at the ends of

the element may involve both displacement and slope. In the case of

plate components, kinematic interface conditions may likewise involve

both displacement and slope. In the case of an elastic component of

general shape, the kinematic interface conditions involve only

displacement at the interface. This is the same set of boundary

conditions imposed in the finite element model, since the compatibility

condition in finite element analysis means that displacements within

elements and across element boundaries are continuous.

In an abstract setting, let z denote a composite vector of

displacement fields in the components that make up the built-up

1 2 T i mi £i
structure ; i.e., z E [z ,z ,...,zr,q] , where z e [H (Ri)]

represent displacements for beam, plate, or elastic components and

q _ R k represents displacements of truss components. The space of

klnematlcally admissible displacement fields is defined as the set of

displacement fields that satisfy homogeneous boundary conditions between

the individual components and the ground reference frame and kinematic

interface conditions between components. Symbolically, this is
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Z = {z e W : yz = 0 on r, _iz = _z on _J} (2.30)

r [Hmi( £ixwhere the product space W = _ _)] Rk is the space of

i=l

displacement fields that satisfy the required degree of smoothness, y is

a boundary operator (the trace operator [66]) giving the projection of

structural displacements and perhaps their derivatives onto the exterior

boundary r, and yi and @ are interface operators that project

displacement fields and perhaps their derivatives from within components

i and J onto their common boundary rlj. This space of functions is

called the space of klnematlcally admissible displacement fields.

2.3.1 Hamilton's Prlnclple

In order to state a general form of Hamilton's Principle, it is

first necessary to define energy quantities associated with the

First, let the strain energy of the structural system bestructure.

denoted by

1

U(z) =-_ au,n(z,z)

where a

r
1

= _ [ [ a i (zi'zi) + ab(q'q)]
i=l u ,C/t

(2.31)

is the strain energy of each component i and ab is the
ui,_ I

strain energy of truss components. The design varlable is

u 1 2 r T u 1u = [ ,u ,...u ,b] , where is the design variable of component i

and b is the design parameter vector of the trusses.

The dependence of the strain energy quadratic form on design

variable u and shape _, which is to be parametrlzed later, of the
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system is indicated. It is presumed that the quadratic strain energy in

Eq. 2.31 is defined for all displacements in the space Z of

kinematically admissible displacements. The strain energy quadratic

form is defined as the sum of strain energies of the components that

make up the built-up structure, each involving a matrix or integral

quadratic form in its displacement field.

Next, define the kinetic energy of the system as

dz 1 (dz dz_

1 r .dz i dzi . .dqdq.

=_ [ _ dui t_ ) + ] (2 32)i=l ,_i 'dt dbtdt'dt)

_ere d i _i is the kinetic energy of _v_ent i -_ _ _ _^ '-_^_,
U,

energy of the trusses. Acre, dz/dt denotes time derivatives of the

displacement z and the kinetic energy quadratic form depends on the

design variable of the structure. As in the case of strain energy,

kinetic energy is obtained by summing kinetic energies of each of the

structural components, each involving its own matrix quadratic form or

integral over the domain of the component. It is presumed that the

kinetic energy in Eq. 2.32 is well defined for all kinematlcally

admissible displacement fields.

Finally, let the virtual work of all externally applied forces be

defined as

U,

r

= [ £ i (_i) + fb(_ ) (2.33)
ill u ,_
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where £ I Ri is the virtual work of the applied forces for componenti
U,

and fb is the virtual work of the applied forces for the trusses, with

time held constant, in undergoing a small virtual displacement z that

satisfies the kinematic admissibility conditions; i.e., for all z _ Z.

The virtual work of applied forces acting on a built-up structure is

obtained by summing the virtual work of external forces applied to each

of the structural components. This virtual work functional is linear In

the virtual displacement z.

Since the displacement of a structural system will in general be

time dependent, each of the functionals defined in Eqs. 2.31 through

2.33 is evaluated at a particular time t. In anticipation of employing

Hamilton's Principle, it is helpful to define the first variation of the

strain and kinetic energy quadratic forms of Eqs. 2.31 and 2.32. For

any kinematlcally admissible virtual displacement z, one defines these

variations as

E _-_ U(z + z;) E a fl(z,i) (2.34)
z,,0 u,

dz dld T.dZ dz _ d _(_-_) (2.35)
T -f) u,

where the strain energy and kinetic energy symmetric bilinear forms

defined on the right sides of Eqs. 2.34 and 2.35 are obtained by

calculating the first variation of the strain and kinetic energy

quadratic forms of Eqs. 2.31 and 2.32.
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With this notation, one is now in a position to state a general

form of Hamilton's Principle that is suitable for design sensitivity

analysis of built-up structures. Following the classical literature

[69-71], the variational form of Hamilton's Principle requires that

t t 1
f I(_ _ T)dt = f L dt (2.36)

to to

for all times to and tI and for all klnematically admissible virtual

displacements z that satisfy the additional conditions

_(t O) = _(t I) = 0 (2.371

In terms of the virtual work linear form of Eq. 2.33 and the strain and

kinetic energy bilinear forms of Eqs. 2.34 and 2.35, one may write

Eq. 2.36 as

tl fdz dZ_}dt = _tl_u,Q(1)d t (2.38)f {au,Q(z'i) - du,Q "dt'dt"

to t 0

for all kinematically admissible virtual displacements z that satisfy

Eq. 2.37.

This general formulation of Hamilton's Principle provides the

variational equations of structural dynamics. The foregoing formulation

directly specializes to the cases of static response and natural

vibration of the built-up structure. Using the theorem of minimum total

potential energy, one could similarly extend the variational formulation

for buckling of a built-up structure, which is not pursued here.
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2.3.2 The Principle of Virtual Work

Consider now the case of static response of a structure to load

that does not depend on time. In this case, time is suppressed

completely from the problem and Eq. 2.38 reduces to

au,_(z'i) ffi £u,_(1) (2.39)

for all z_ Z, which may be viewed simply as a statement of the principle

of virtual work. Note that this equation generalizes the variational

formulation of boundary-value problems of individual structural

components. Note also that if the load linear form on the right of

Eq. 2.39 is continuous in the space Z and if the energy bilinear form on

the left side of Eq. 2.39 is strongly elliptic on Z, then by Lax-Milgram

theorem [66], Eq. 2.39 has a unique solution z _ Z.

2.3.3 Free Vibration

Consider next the special case in which there are no externally

applied loads and in which one wishes to consider harmonic vibration of

the built-up structure. Harmonic motion of the entire built-up

structure is defined as a displacement field that can be written as the

product of a time independent mode function y _ Z and a harmonic function

sln_t; i.e.,

z = ysin_t (2.40)

where y _ Z.

Before substituting this harmonic displacement field into Eq. 2.38,

it is helpful to transform Eq. 2.38, using an integration by parts.
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Since the kinetic energy blllnear form is linear in its individual

factors, one has

d_d dz- 4a(_-f,z) = d n( ,i) +d a"_-'_-f"
dt u, u,- dt- u,

Integrating both sides of this equation from tO to tl, recalling

m

that z must satisfy Eq. 2.37, one has

(2.41)

0 = du,_(_-_,z) to {du,( ,;) + d Cdz clZ_}dt (2.42)dt- u,_dt'dt"

One may now substitute for the second term in the Integrand on the

right side of Eq. 2.42 into Eq. 2.38, with the load linear form equal to

zero, to obtain

tI .d2z -,

ft0 {au,fl(z,i) + du, fltdt2,z/_}dr = 0 (2.43)

for all ze Z.

One may substitute z from Eq. 2.40 and z in the form z = yf(t),

m

where y is an arbitrary time independent displacement field in Z and

f(t) is an arbitrary function of time that vanishes at to and tl, to

obtain

t I

(au,_(y,y) - Jdu, _(Y'Y)} ft0 sln_tf(t)dt = 0 (2.44)

for all ye Z. Since the integral in Eq. 2.44 is not zero for all

functions f that vanish at tO and tl, its coefficient must be zero.

2
Defining ¢ = m , one has the variational elgenvalue equation

au,a(y,y ) = Cdu, fl(y,y) (2.45)
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for all y e Z. Note that this is the form of the variational eigenvalue

problem for individual structural components.

2.4 Material Derivative for Shape Variation

Structural design problems are considered in which the shape of a

two or three dimensional structural element is to be optimized, subject

to constraints on natural frequency, displacement, and stress in the

structure. Since shape of the domain that a structural component

occupies is treated as the design variable, it is convenient to think of

the domain R as a continuous medium and to utilize the material

derivative idea from continuum mechanics to find relationships between a

variation in shape and the resulting variation in funct_ona!s thnt Arise

in shape optimal design problems. In this section, the material

derivative is defined and basic material derivative formulas for

structural response functlonals are presented.

Consider a domain R in two or three dimensions, shown schematically

in Fig. 2.3. Suppose that only one parameter T defines the

transformation T, as shown in Fig. 2.3. Then, the mapping

T : x + x (x), x • R, is given by

x _ T(x,T) I
(2.46)

_ T(n, _)
T

where

i T(x,T) ffi x + rV(x) (2.47)
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Variations of the domain Q by the design velocity field V(x) are denoted

as Q = T(Q,%) and the boundary of O is denoted as F •

Suppose z (x) is a smooth classical solution of the formal

operator equation on the deformed domain _ ,

=f , x_Q "_

JZ =0 , X e r

(2.48)

Then, the mapping z (x + _V(x)) is defined on Q and zx(x x) in Qz depends

on _ in two ways. First, it is the solution of the boundary-value

problem on Q . Second, it is evaluated at a point x that moves

with _. The polntwlse material derivative (if it exlsts) at x • Q !s

defined as

d I = llm_(x) = -_ z (x+_V(x)) v-O _0

z (x + _V(x)) - z(x)
(2.49)

If z has a regular extension to a neighborhood U_ of _ , denoted

as z , then one has

_(x) = Z'(X) + vzTv(x) (2.50)

where

z'(x) _ lim

_0

z(x) - z(x)

is partial derivative.

Let z (x) be the solution of the following variational equation on

the deformed domain Q :
"6
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aT(z T, z T) ffiff_ c(zT,zT)d_ = £T(zz)
T

(2.51)

m

for all z
T

ZT, where ZzC Hm(_ z) is the space of kinematlcally

admissible displacements and c(.,.) is a bilinear mapping that can be

obtained by integration of the formal operator equation by parts.

Z c Hm(_z).Then, z z z

One attractive feature of the partial derivative is that, with

smoothness assumptions, it commutes with derivatives with respect to x,

because they are derivatives with respect to independent variables

[5,72]; i.e.,

!

(_z) =
_zi _xl z' , i " 1,2,3 (2.52)

Consider now a general functional that is defined as an integration

over _T'

= ff_ F (xT)d_ T (2.53)
T

where F is a regular function defined on fl. The material derivative
T T

of Eq. 2.53 at R is [5]

_' = f_9 [F'(x) + div(F(x)V(x))]d_

Now, if _ is Ck regular [5], one has

(2.54)

_' = ffnF'(x)d_ + /_(x)(vTn)dr (2.55)

It is shown in Ref. 5 that if a general domain functional _ has a

gradient at _ and _ has Ck+l regularity, then one need consider only
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the normal component (vTn) of the velocity field on the boundary for

derivative calculations. Similarly, one can obtain the material

derivative calculations.

When one considers built-up structure shape optimization, the

boundary movement of one structural component causes movement of the

entire domain of an attached structural component at their interface.

Special interest is directed to the material derivative of a general

functional defined as an integration over a specific domain 3

(restricted to two-dimensional structures), where 3 moves in the normal

direction to the plane (or line) on which 3 is defined. It is presumed

that the normal to the plane (or line) where this specific domain _ is

defined is parallel to rectangular coordinate axes and the velocity

field is V = [vX,vY,vZ] T at 3.

By the nature of the specific domain, one has Vx = Vx = 0 on the
y z

domain _ that is on the y-z plane, V y ffiV y = 0 on the domain 3 that Is
x z

on the x-z plane and Vz = Vz ffi0 on the domain _ that is on the x-y
x y

plane.

Consider now a general functional that is defined as an integration

over 3,

_ffi ff~Gd_

where G is a regular function defined on 3.

is [5]

(2.56)

The material derivative
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_' = ff(G' ÷ CNVN)d_ ÷ f G(vTn)dF (2.57)
r

where N denotes the direction of domain movement.

Comparing the material derivative formula of Eq. 2.57 with the

material derivative formula of Eq. 2.55, one can note that the second

term in the domain integral of Eq. 2.57 is added to Eq. 2.55, which is

regarded as the effect of domain movement normal to the plane (or llne)

on which _ is defined.

2.5 Static Design Sensitivity Analysis

The variational method for design sensitivity analysis with respect

to both design variable and shape changes is now considered, using the

general variational formulation presented in Section 2.3, to obtain

expressions for design sensitivity of functlonals with respect to

combined design variation. Differentiability of state with respect to

design and existence of the material derivative _ are presumed and are

used in this section to derive an adJolnt variable method for design

sensitivity analysis of quite general functlonals. An adJolnt problem

that is closely related to the original structural problem is obtained

and explicit formulas for structural response design sensitivity are

obtained.

2.5.1 Calculation of First Variations

Consider the variational form of the built-up structural equation

in Eq. 2.39, repeated here as

a _(z,z)= _ _(z) (2.5s)
U, U,



30

for all z e Z. The objective is to use this variational equation to

obtain a relationship between variations in design functions and shape

and the resulting variation in state of the system.

To simplify notation, consider the deformed domain due to a

velocity field V, written as

_T - {xT • Rn : xz = x + W(x), x • _} (2.59)

Assuming that the energy billnear form is differentlable with

respect to design functions and shape, the first variation with respect

to both shape and design functions gives [5]

[a(z,z)]' =-a_u,_(z,z) + au,v(Z)Z) + au,_(7,z)

r

"tl
I=i

) r

a' I _(zl'zl) + a_b(q'q)] + I a i I(zi'zl)

6u ,f/" ill u ,V

where V i is the velocity field on _. Note here that the lengths of

trusses are treated as design variables. The prime notation here plays

the role of the first variation of the calculus of variations, with

respect to explicit dependence of the energy form a on design and
u)_

shape. This first variation is presumed to be linear in 6u. Hence it

is the Frechet derivative of au, _ with respect to design and shape,

evaluated in the direction 6u. This notation is chosen to display

clearly which variables are held fixed and which are varying in the

terms that arise.

r

+ _ a i (_i,_i) (2.60)
i=l u ,_
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Similarly, one may take the first variation of the load linear form

to obtain

r t v r w

= [ I _ _i (_i) + f6b(q )] + Z _ui i(_I) (2.61)i=l _ui , i=l ,v

As in the case of the energy bilinear form, the variation of the load

linear form is also presumed to be linear in _u.

With this notation, and denoting the solution of Eq. 2.58 on the

deformed domain and varied design as z(T), one may differentiate both

sides of Eq. 2.58 with respect to _ and evaluate the result at • = 0,

using the notation of Eqs. 2.60 and 2.61, to obtain

au,_(_,z) + a'_u,_(z,z) + a_,V(Z,i) = _'_u,_(1) + £_,V(i) (2.62)

for all z • Z, where _ is the sum of the first variations due to design

and shape change and Z is the space of kinematically admissible

displacements. Note that this equation is valid for arbitrary virtual

displacements that are consistent with the constraints, so if the

energy billnear form is strongly elliptic, Eq. 2.62 uniquely

determines _, once 6u and V are specified. Explicit solution of this

equation for _ as a function of _u and V, however, is not generally

possible.

Consider a general functional that defines performance of a built-

up structure, of the form



32

T -- v _(z)__
U,

r

=i=l[ _i gi(zi'Vzl ,Zjk,Ul)d_ + h(b,q) (2.63)

where the function g is continuously differentlable with respect to its

and Zjk = _2z/_xj_xk, J,k=l-3, denotes the second derivativearguments,

of z. Note that in some structural components, arguments of the

function g can be only first derivatives of z, in which the second

derivative of z in Eq. 2.63 is presumed to be disregarded.

Taking the total variation of this functional for each component of

a structure, one has

' d Yu+T6U,_(z(T))[¥ =d--T
vffi0

r .i
= [ ff i [gllzl + g iv_i + _2 (gllzjk)

i=l _ z Vz j ,k=n I zj

- glzi(VziTvl) - givziV( vzITv i)

r

+I
i=l

_ _2 gii(vziTvi)j k _ gii(ZN_iN ) _ gi iV(ZN_iN )

J ,k=n I Zjk z Vz

n2

- l gll (ZN_iN)jk + gNiVIs + gll 6ul]d_

J ,kfn I Zjk u

g i(V iTn i _h _h .

fr i )dr+-_b +-_q
(2.64)

where
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.i i' vzITviz = z + + ZN%iNi (2.65)

and ni is the outward unit normal vector for each domain _i. Note that

terms including VN in Eq. 2.65 are due to domain movement effects of a

one- or two-dlmenslonal structural component.

Rewriting the eighth and ninth terms in the domain Integral of

Eq. 2.64, one has

and

i V(z V iN) = g [(Vz )VIN + ZNi (wiN)] (2.66)g i
Vz Vzi

gl k. gli i

J,k=n I Zjk J,k=n I Zjk

- i. iN i (viN)jk][(ZN)jkV + zN (2.67)

respectively.

The second terms on the right sides of Eqs. 2.66 and 2.67 vanish,

since W iN = 0 and (viN)jk = 0, respectively, due to the fact that V IN

n iis constant on .

Four terms in the domain integral of Eq. 2.64 cancel; i.e.,

[_gi i _ i i _ _2 gi (ZNi)
z i jk
iZN gvziVZN j,k=n I Zjk

Then, Eq. 2.64 becomes

+ gNi IV iN= 0 (2.68)

¥! ffi=

i=1_ ff_i [gilzl + gl _2 (gl i _k ) gll )vziV_i + - (vziTv i

z J,k=n! Zjk z

gl iV(vziTv i) _2 i (vzITv i) + i 6ui]d_
- - gl jkgi

Vz J ,k=n I Zjk u

+
r rigi(vITnl)d _h 3h[ ;

i--I

(2.69)
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In order to take advantage of this result, one needs to write terms

on the right of Eq. 2.69 explicitly in terms of _u and V. Since

cannot generally be determined explicitly from Eq. 2.62, one must resort

to a technique such as the adJoint variable method to achieve the

desired result.

2.5.2 AdJoint Variable Method

In order to treat terms on the right of Eq. 2.69, one may define an

adjolnt variational equation by replacing _ in the term on the right of

Eq. 2.69, by a virtual displacement _ and equate the result to the

energy billnear form, evaluated at the adjolnt variable _; i.e.,

r ffa i gii ii n
gi _i+ 2 t _ + 8h -

au, n(x'_) = _ [ + i _ g i k Ida -_q p

i=l z Vz J,k=n I Zjk

(2.70)

for all _ e Z, where _ = [xl,x2, .... ,_r,p]T. Presuming that the energy

bilinear form is strongly elliptic, this equation uniquely determines

_, if the terms on the right are continuous linear forms in _.

Since _ satisfies the kinematic admissibility conditions, one may

evaluate Eq. 2.70 at _ = _ and Eq. 2.62 at z = k, to obtain

r

vziV_i + i _ik]d_ + _hi--I
z j ,k=n I Zjk

! !

= au,_(x,_-)= au,_(_,x) = Z6u,_(x) + Zu,V(X)

t !

- a6u,_(z,_) - au,v(Z,_)
(2.71)
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Substituting this result into Eq. 2.69 and collecting terms that

are associated with variations in the design function and the velocity

field, one has the total differential of the functional of Eq. 2.63,

written explicitly in terms of design function variation and shape

variation, as

, r f£ gll 8h _' _(_) - a' ,_(z _)}= { _ i _uld_ +-_ _b + 6u, _u '
i=l u

r r gl(vlTnl r £i vzlTvi+ { _ fi )dr- _. f [gli( )
iffil i=l z

n2 vziTi
+ gi IV(vzlTvI ) + [ gli ( )Jk ]d_

Vz J ,kffinI Zjk

+ _,V(_) - au,v(Z,_) } (2.72)

The differentials of the linear and bilinear forms on the right

side of Eq. 2.72 may be evaluated, using the expressions of Eqs. 2.60

and 2.61 and the results of each distributed component and truss, to get

explicit formulas. Evaluating the terms in the second bracket of Eq.

2.72 requires manipulations to derive identities for transformation of

the domain integral that involves velocity to a boundary integral, using

integration by parts and boundary/interface conditions. This will be

done in Chapter 3. Note that evaluation of the explicit design

sensitivity formula requires solution of Eq. 2.70 for the adjolnt

variable and evaluation of functlonals involving both the state z and

adJolnt variable _. As will be seen in numerical examples, these
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calculations are direct and take full advantage of the finite element

method for solving both the state and adjolnt equations, requiring only

evaluation of the solution of the same set of finite element equations

with different right sides.

2.6 Eigenvalue Design Sensitivity Analysis

One may now determine eigenvalue design sensitivity of a built-up

structure, due to variation in both design variables and shape. No

adjoint variable is required in elgenvalue design sensitivity

calculation. Eigenvalue sensitivity can be expressed directly in terms

of eigenvectors of the eigenvalue problem and variations in the

eigenvalue bilinear forms. Differentiabillty of simple (non-repeated)

elgenvalues is presumed to be used to obtain explicit formulas,

utilizing the material derivative formulas for simple eigenvalue

sensitivity analysis.

2.6.1 Calculation of First Variations

Consider the eigenvalue problems for vibration and buckling of a

built-up structure that is described by a variational equation of the

form of Eq. 2.45,

au, fl(y,y) = _du,fl(y,y ) (2.73)

for all y eZ, where Z is the space of klnematically admissible

displacements. Since Eq. 2.73 is homogeneous in y, a normalizing

condition must be added to uniquely define the eigenfunction. The
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normalizing condition employed is

d R(y,y) ffil (2.74)
U,

The energy billnear form on the left side of Eq. 2.73 is the same

as the billnear form in static problems treated in Section 2.5. There-

fore, it has the same differentlabillty properties discussed there. The

bilinear form du, R on the right side of Eq. 2.73 represents mass effects

in vibration problems and geometric effects in buckling. In most cases,

it is even more regular than the energy bilinear form In its dependence

on design and elgenfunction. Since both bilinear forms in Eq. 2.73

depend on the design variable u and shape _, it is clear that the

eigenvalue g also depends on these quantities. The objective here is to

use this variational formulation to obtain design sensitivity of

to variations in the design function and shape. Using the notation of

Eq. 2.59 for perturbation of the domain _, one may calculate the design

variation of the billnear form on the right side of Eq. 2.73 as [5]

[d(y,y)]' _ d' _(y,y) + d_,v(y,y) + d _(#,y)_U, U,

=[
r r

_ d' Ri(yl,y i) + d_b(S,S)] + _ d' i i(yi,y i)i=l _ui , i=l u ,V

r

+ _ d i i(#i,y i) (2.75)
i=I u ,R

where y = [yl,y2, .... ,yr,s]T" This notation parallels that of Eq. 2.60,

which remains valid for design variation of the energy bilinear form on

the left side of Eq. 2.73.
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2.6.2 Eigenvalue Design Sensitivity

Presuming differentiability of the eigenvalue _ and eigenfunction y

with respect to design and shape, supported by the proofs presented in

Ref. 5, one may take the total derivative of both sides of Eq. 2.73 to

obtain the formal relationship

a _(9,_) + a' _(y,_) + a' .(y,_) =U, _U, U,V

+ _d_u,a(y,_)+ _d_,v(y,_)

for all yeZ.

to obtain

_'du, _(Y,Y) + _du, fl(Y,Y)

(2.76)

One may evaluate this equation at y = y, using Eq. 2.74,

_' ffi[a_u,fl(y,y) - _d_u,_(y,y)] + [a_,V(y,y) - _d_,v(y,y)]

- [au,a(9,y) - _du,a(9,y)] (2.77)

Using symmetry of the two bilinear forms and _ eZ, Eq. 2.73 implies that

the third term on the right of Eq. 2.77 is zero, yielding the result

_' ffi [a_u, fl(y,y) - _d_u,_(y,y)] + [a_,V(y,y) - _d_,v(y,y)]

(2.78)

The differentials of the billnear forms on the right side of

Eq. 2.78 may be evaluated, using the expressions of Eqs. 2.60 and 2.75

and results for each distributed component and the truss, to get

explicit design senstivlty formulas. As in the static case, finding

expressions in the second bracket of Eq. 2.78 for shape design

sensitivity will be done in Chapter 3. Note that evaluation of the
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design sensitivity of a simple etgenvalue given by Eq. 2.78 is explicit

in terms of the eigenfunction y and does not require solution of a

separate adJoint problem.
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CHAPTER 3

A UNIFIED METHOD FOR SHAPE DESIGN SENSITIVITY ANALYSIS

OF BUILT-UP STRUCTURES

3.1 Introduction

The technique employed in shape design sensitivity analysis of

structural components [5] and built-up structures requires integrations

by parts and manipulations to derive identities for transformation of

domain integrals that involve velocity to boundary integrals. The

integrations by parts that are required to achieve this objective depend

on the nature of the terms arising in the integral, hence on the types

of structural components involved. Furthermore, boundary and interface

conditions are needed to obtain the final shape design sensitivities.

In this chapter, standard formulas are derived for each structural

component type (beam, plate, plane elastic solid, etc.) to obtain

boundary integrals over the component boundary that involve only normal

movement of the boundary of that component. Since built-up structures

are defined as structures in which components intersect along common

boundaries, contributions from each of the components that interface at

the boundary may be accumulated to obtain the desired result for the

built-up structure.

b guideline to be used in identifying types of components that may

be interfaced and the specific character of the interface conditions

will be the structural finite element technique. Standard finite
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element interface conditions that are employed in analysis of built-up

structures include definition of interfacing conditions that must be

imposed in finite element modelling of a structure. The interface

conditions that define the space of klnematlcally admissible

displacement fields define the interface boundary conditions that are

used in carrying out the integration by parts to obtain standard design

sensitivity formulas for each structural component. Attention will be

paid to this aspect of consistency of built-up structural shape design

sensitivity analysis, with an eye toward unifying a practical analytical

formulation that is consistent with the finite element modelling

technique.

Basic shape design sensitivity forms for built-up structures that

involve up to two dimensional structural components such as beams,

plates and plane elastic solids are obtained in Section 3.2. In Section

3.3, analytical examples are used to obtain shape design sensitivity

forms for typlcal built-up structural models. These examples

demonstrate the unified method of shape design sensitivity analysis that

applies to practlcal built-up structures and yield formulas that may be

used in a variety of appllcatlons.

3.2 Basic Shape Design Sensitivity

Forms for Built-Up Structures

The first bracket of Eq. 2.72 for static response and the first

bracket of Eq. 2.78 for elgenvalues are simply explicit derivatives of

structural response measures with respect to a conventional design

variable u (cross-sectlonal area or thickness). In this chapter,
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analytical design sensitivity analysis for shape variation is

considered, to evaluate the remaining terms of Eqs. 2.72 and 2.78.

Hence, the conventional design variable u is suppressed in this

chapter. Further, even though there is self weight, in addition to

externally applied load, and the self weight will depend explicitly on

the design, the applied load is expressed only as f(x) in this

chapter. Shape design sensitivity forms are obtained for built-up

structures that involve beams, plates and plane elastic solids.

Rewriting shape design sensitivity terms in the second brackets of

Eqs. 2.72 and 2.78, one obtains

, r rigi(viTni)d r r ffni _ i T. i gi V(vziTv i)v _ ;. f - X [g-i(v,.v)+
i--I i=l z Vzi

n2 TVi)jk] '+ [ gll (vzi d_ + t_,v(_)- au,v(Z,_)
J,k=n I Zjk

for static response and

! t

ffi au,v(y,y) - _du,v(y,y)

for the eigenvalue problem, respectively.

(3.1)

(3.2)

3.2.1 Static Shape Design Sensitivity Forms

Rewriting the variational equation of Eq. 2.51 on a deformed

domain, one has

ill "r "r t=1 i.r

(3.3)
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for all z e Z • Suppose that the bilinear form in Eq. 3.3 is
T T

dlfferentlable with respect to shape and note that the material

derivative z depends on the direction V (velocity field).

Taking the material derivative of both sides of Eq. 3.3, with

conventional design fixed, using Eq. 2.57, and noting that the partial

derivatives with respect to T and x commute with each other, one has

f ! !

[a(z,z)] - au,v(Z,Z) + z(&,z) = [£(z)] (3.4)

for all z • Z, where

!

[a(z,z)] =

t !r

ffnl[ -i) i -i- inc(zl,z i) + c (zl,z + (c(z ,z )IN V Jdfl
i=l

+
fri c(zl, zl) (viTnl)dr

i=l

(3.5)

and

!

[_(z)] = r f iTzl '

ff i [i=l

+ (fiTzl)NViN] d _

r fiTzi (viTi)dr (3.6)+ fi
i=l r

In Eqs. 3.5 and 3.6, terms involving VN represent the effect of domain

movement in the normal direction to each domain defined, as discussed in

Section 2.4. The fact that the partial derivatives of the coefficients

that depend on conventional design in the billnear mapping c(.,.) are

zero has been used in Eq. 3.5 and f' = 0 has been used in Eq. 3.6,

because they do not depend explicitly on T. For z , one can take

z (x+TV(x)) = z(x) ; i.e., choose z as constant on the llne
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x = x + TV(x). Then, z
T T is an arbitrary element of Hm(GT) that

satisfies kinematic boundary conditions on rT. In this case, using

Eq. 2.65, one has

"1 -i ' iTvI
z ffiz + Vz + zNi%iN = 0 (3.7)

where V is defined in the local coordinate system.

From Eqs. 3.4 to 3.6, one obtains, using Eqs. 2.65 and 3.7,

!

a z,z)
u,V ( = _

r

+ Y.
i=1

ff i[c(vzlZvi + zs_IS, _i)
iffil

-i. iN,
+ c(zi,vziTv f + ZNV ) - (c(zi,zl))NViN]d n

c( zl ,zl) (viTni) d r (3.8)fi
r

and

r

ZNV ) - (fiTzi)NVN]d a

r

+ [ f fiTzi(viTnl)dr (3.9)
i=l r

respectively. As discussed in Chapter 2, W iN = 0 is presumed to obtain

Eqs. 3.8 and 3.9.

The final form of Eq. 3.1 becomes

r Qi [c(Vz iTv i
w' = Y II ,xi) + c(zi, vxiTvi) - fiT(vxiTv i)

i--I

gii(vziTi ) - gi V(vziTi) - n2[
z Vzi

J ,kffinI

i Tvi)jk]d_g i (vzi

Zjk

+

r

[ fi
i=l r

[gi _ c(zi,Xi) + fiTxf](viTni)d r (3.10)
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i = O, and the integrals over _iwhere it is assumed that fN can be

transformed to boundary integrals by integrating by parts and using the

formal operator equations. This is essential in shape design

sensitivity analysis and remains to be done in the following section.

3.2.2 Eigenvalue Shape Design Sensitivity Forms

Writing the variational eigenvalue equation on a deformed domain,

one has

r r iT

aT(yT'YT)- I--IIffal c(yi'yl)dflTT --¢T iffillffal YT Mi-yTd fl

T T

- {.rd(yT,YT) (3.11)

for all y_ e Z T , with the nomaalizlng condition of Eq. 2.74.

Taking the material derivative of both sides of Eq. 3.1I, using

Eq. 2.57, and noting that the partial derivatives with respect to T and

x commute with each other, one has

! ! !

[a(y,y)] ffi _ d(y,y) + _[d(y,y)] (3.12)

for all y e Z, where

!

[a(y,y)] ffi

r

Z ff i [c(Yi''yi) + c(yi'yi') + (c(yi'yi))NViN]dfl
ill fl

r

+Z
ifl

frl c(yl,Yl)(viTnl) dF (3.13)

and
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[d(y,y)]
!

+ (yiTMiyi) NviN] d _

r T T

+ [ S i yi Miyi(vi ni)dr (3.14)
i=l r

The third term in the domain integral of Eqs. 3.13 and 3.14,

respectively, represents the effect of domain movement, as in static

response. As in Eq. 3.5, the fact that the partial derivatives of the

coefficients in the bilinear mapping c(.,.) are zero has been used in

Eq. 3.13. Also, M' ffi0 has been used in Eq. 3.14. As in static

response, for YT one can take y(x T + TV(x)) =-y(x) . Hence, If y e Z is

arbitrary, then YT is an arbitrary element of Z . Also, from gq. 3.7T '

one has

Y , T NiV iN -o (3.15)

Now Eqs. 3.13 and 3.14, using Eqs. 2.65 and 3.15, become

T !

au,v(y,y) = [a(y,y)] - a(y,Y)

r i viN -i. iN,y ff i + YN ,yl) + c(yi, v_i i + YN v }
i=l

- (c(yi,yi)) N viN]dfl

+ r i)(viTni)d; J"i c(yI'Y r
i=l r

(3.16)

and
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! t

du,v(y,y) ffi [d(y,y)] - d(_,y)

r

I
ill

ff i[(vyITvi + i iN-T i-i + yiTMi(yNv ) M y _iTvi+_iNViN)

- (yirMi_i)N vIN]d _

r TM i(viTni)d r
+ i--ll;¢ yl iT (3._7)

respectively, where it is assumed that _ ffi0.

Equation 3.12 can now be written as

t __ t t

au,v(y,y) + a(9,y) ffi_ d(y,y) + _du,v(y,y) + _d(_,y) (3.18)

for all y e Z. Since y e Z, one may evaluate Eq. 3.18 with y ffiy, using

symmetry of the billnear forms, to obtain

! ! I

d(y,y) = au,v(y,y) - _du,v(y,y) + [a(y,#) - _d(y,9)] (3.19)

Noting that _ eZ, the term in the bracket on the right of Eq. 3.19 is

zero. Furthermore, due to the normalizing condition of Eq. 2.74, one

has the simplified equation

1 t t

= au,v(y,y) - _du,v(y,y)

r Tv iTHi(_iTi)j_[ ff i [-2c(yI'VYl i) + 2
i=l

r

+ i_ 1 f_ [c(yl,Yl)- _(yiZMiyl)](vITni)d r
(3.20)
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where, as in the static response case, integrals over _ can be

transformed to boundary integrals by integrating by parts and using

formal elgenvalue differential equations, which remains to be done in

the following section.

3.3 Analytical Examples of the Unified Method

for Shape Design Sensitivity Analysis

From the basic shape design sensitivity forms in Section 3.2, shape

design sensitivity forms for built-up structures that involve beams,

plates and plane elastic solids in a variety of configurations are

derived in this section by applying the boundary conditions (outside and

interface) to the standard forms for structural components of each

built-up structural model encountered. Typical outside boundary

condlCions for structural components are summarized in Table 3.1.

Symbols used in Table 3.1 and their physical interpretations are defined

in Table 3.2. Final shape design sensitivity forms for static response

are obtained for the built-up structural models listed in Fig. 3.1.

Throughout the procedure, a general displacement or stress functional

that is defined on certain structural component in each built-up

structural model is considered to show the unified method for shape

design sensitivity analysis. One can notice that the final shape design

sensitivity forms are identical, regardless of constraints, with only

different right sides of the adJolnt equations. Similarly, shape design

sensitivity forms can be obtained for the eigenvalue problem, which is

not pursued in this section, but is treated in Chapter 5.
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Table 3.1 Outside Boundary Conditions

for Structural Components

Structural

Component

Beam

(Bending)

Beam

(Axial)

Plate

Plane

Elastic

Solid

SS

C

Fr

Fx

Fr
I

SS
L

C

Fr

Fx

Fr

Boundary Conditions

Kinematic Natural

z = 0 (3.21) M = 0 (3.22)
x

z = z = 0 (3.23)
X

M = V = 0 (3.24)
x x

z = 0 (3.25) I

F = 0 (3.26)

(3.27) (3.28)z=O M=M=0
x y

z ffiVz.n = 0 (3.29)

M = M = V = V = 0
x y x Y (3.30)

z = 0 (3.31)

T i= 0 (3.32)

* SS: Simply Supported, C: Clamped, Fr: Free, Fx: Fixed
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Table 3.2 Definitions of Symbols and Physical Interpretations

for Structural Components

Structural

Component

Beam

(Bending)

Beam

(Axial)

Plate

Plane

Elastic

Solid

Definition of Symbol

M -- Elz
x XX

M -- Elz
Y YY

M = GJz
xy xy

Vx--~ (ElZxx)x 1

Vy = (ElZyy)y

F= Fa%z
X

Mx= -D(Zxx + 9Zyy) [

J
My = -D(Zyy + 9Zxx)

M -- -D(l-9)z
xy xy

Vx= -D(Zxx x + (2-_)Zxyy)

Vy = -D(Zyyy + (2-V)Zxxy) '

T i= j__x,yO ij (z)n j, i=x,y

Physical

Interpretation

Bending moment

Twisting moment

Shear force

Axial force

Bending moment

Corner force,
Torsional moment

Effective shear

force

Traction
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3.3.1 Description of Basic Built-Up Structural Models

Figure 3.1 shows basic built-up structural models that consist of

trusses, beams, plates, and plane elastic solids, interconnected at the

interior or edge (or corner) position. Most real engineering built-up

structures can be related to these models. Structural componentsin

each built-up structural model are specified by a, h, .... The domains

and outside boundaries of structural components in each built-up

structural model are denoted as (R for a single component)

and rl (r for a single component), i= a,b,..., respectively. The

i
interfaces are specified as y for a single interface and y , i=1,2,...

for multiple interfaces. For the models listed in Fig. 3.1, it is

presumed that all the outside boundaries are fixed and that dimensions

and material properties of structural components are given. Interface

conditions (kinematic and natural) are defined in Table 3.3 for each

model listed in Fig. 3.1. The symbols used in Table 3.3 and their

physical interpretations are defined in Table 3.2. The space of

klnematlcally admissible displacement fields Z is then defined as

displacements that satisfy all kinematic boundary conditions (outside

and interface) for each model encountered.

3.3.1a Beam-Truss Built-Up Structure with Interior Interface

Bending of a clamped beam under lateral load, supported by a pin-

Jointed truss, shown In Fig. 3.1a, is considered. Effects of torsion

and axial deformation of the beam are neglected. Truss length is also

presumed to be fixed. This means that the ground supporting position of

the truss can move together wlth the position _.
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Z

(a) Beam-Truss Built-Up Structure
with Interior Interface

f(x)

(b) Beam-Truss Built-Up Structure

with Edge Interface

Y L.. ,

x Ly

Z

Y

(c) Plate-Truss Built-Up Structure
with Edge Inter@ace

Y,z y

(d) Plate-Truss Built-Up Structure
with Corner Interface

T

b

_T x

: XrZ

(e) Plane Elastic Solid-Truss Built-Up
Structure with Corner Interface

Figure 3.1 Basic Built-Up Structural Model
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y,_Y,_ L_

Y

,/ .......,' a '-Y -//.

X WX V

Z )W)V

(f) Beam-Plate Built-Up Structure

with Interior Interface

.y .^b a
y,w ,v ,v

4/' 5

X _ _"Txlw

%)W)V I

(g) Beam-Plate Built-Up Structure

with Edge Interface

/_Y ,_Y L x = •

Z )W)W

(h) Plane Elastic Solld-Plate

Built-Up Structure with

Interior Interface

Y,_

/
_, _5

2

_\ x _x

_..Z
Z)W)W

(1) Plane Elastic Solld-Plate

Built-Up Structure with

Edge Interface
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The design variable is the position _ of the supporting truss, as

shown in Fig. 3.1a. The state variable consists of the displacement

functions zi, i=a,b of the beam components and the displacement vector q

of the truss components.

Interface conditions are obtained in Table 3.3; i.e., at the

interface y, displacement and slope are continuous (Eq. 3.33), bending

moment is continuous and the shear force difference between beam

components acts as the load on the supporting truss (Eq. 3.34).

3.3.1b Beam-Truss Built-Up Structure with Edge Interface

Bending of a beam under lateral load with one end clamped and the

other end supported by a pln-Jolnted truss, as shown in Fig. 3.1b, is

considered. The same assumptions made in Subsection 3.3.1a are applied

to this model.

The design variable is the position x of the supporting truss as

shown in Fig. 3.1b, and the state variable is the displacement function

z of the beam component and the displacement q of the truss component.

Interface conditions similar to those for Fig. 3.1a are obtained in

Table 3.3 (Eqs. 3.35 and 3.36).

3.3.1c Plate-Truss Bullt-Up Structure wlth Edge Interface

Bending of a rectangular plate of constant thickness under lateral

load with two sides clamped and the other two sides free, supported by

pln-jolnted trusses at the free edges shown in Fig. 3.1c, is

considered. It is presumed that truss lengths are fixed and the

boundaries of the plate components are parallel to the coordinate axes.
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The design variable is the position _ of the supporting trusses as

shown in Fig. 3.1c. The state variable consists of displacement

functions z i, i=a,b of the plate components and displacement vectors qt,

ifc,d of the truss components.

The interface conditions are obtained in Table 3.3; I.e., the dis-

t
placement and slope at the interface y , iffil-3 are continuous (Eqs. 3.37

2
to 3.39), the bending moment and shear force are continuous at T

1 3
(Eq. 3.40), and the difference of corner forces at y and y acts as the

load on the truss components c and d, respectively (Eqs. 3.41 and 3.42).

3.3.1d Plate-Truss Built-Up Structure with Corner Interface

Bending of a rectangular plate of constant thickness under lateral

load with two sides clamped and the other two sides free, supported by a

pin-Jointed truss at the plate corner as shown in Fig. 3.1d, Is

considered. The same assumptions made In Subsection 3.3.1c are applied

to this model.

The design variable is the position _ of the supporting truss as

shown In Fig. 3.1d, and the state variable is the displacement function

z of the plate component and the displacement q of the truss component.

Interface conditions similar to those for Fig. 3.1c are obtained in

Table 3.3 (Eqs. 3.43 and 3.44).

3.3.1e Plane Elastic Solld-Truss Built-Up Structure

with Corner Interface

In-plane deformation of a rectangular plane elastic solid under

traction with two sides fixed and the other two sides free

interconnected by trusses at the corner of plane elastic solid, as shown
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in Fig. 3.1e, is considered. It is presumed that the truss lengths are

fixed.

The design variables are _ and _ of the intersecting position as

shown in Fig. 3.1e. The state variable consists of displacement

functions zj, J=x,y of the plane elastic solid and displacement vectors

qi, ifa,b of the truss components.

Interface conditions are obtained in Table 3.3; i.e., displacement

and traction are continuous at y (Eqs. 3.45 and 3.46).

3.3.1f Beam-Plate Built-Up Structure with Interior Interface

Bending and in-plane deformation of a clamped beam-plate built-up

structure under lateral load, as shown in Fig. 3.1f, are considered.

Effects of torsion and axial deformation of the beam component are also

considered. In this case, a part of the plate boundaries is the domain

1
of the beam, denoted as y as shown in Fig. 3.1f. Hence boundary

movement of the plate component causes movement of the entire domain of

the beam component. It is presumed that the boundaries of plate

components are parallel to the coordinate axes.

The design variable is the location _ of the beam component. The

state variable consists of bending displacements w i, iffia,b, in-plane

displacements _iJ, ira,b, J=x,y of the plate components where J is used

to specify the direction in In-plane displacement, bending displacements

A

v and v of the beam in the z- and y-dlrectlons, respectively, and axial

displacement _ of the beam component. For the corresponding adJolnt

variable, a bar(-) is employed on top of the state variable as

w, w, v, v, and _ for design sensitivity analysis, which will be used in

the following section.
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Interface conditions are obtained in Table 3.3; i.e., bending

displacements and normal slopes (torsion angle for the beam) are

continuous at yi, i=I-3 (Eq. 3.47), in-plane displacements of the plates

and axial displacements of the beam are continuous at ¥i, I=I-3

(Eq. 3.48), differences of the bending moments and shear forces between

1
the plates act as the twisting moment and load on the beam at y

(Eq. 3.49), corner forces from the plates and shear forces from the beam

should be in equilibrium at i, i=2,3 (Eqs. 3.50 and 3.51), difference

of tractions between plates (plane elastic solids) acts as the load on

2 3the beam at yl (Eq. 3.52), and forces at the interfaces _ and should

also be in equilibrium (Eqs. 3.53 and 3.54), where in Eqs. 3.53 and

3.54 V represents the shear force of the beam in the y-dlrectlon.
X

3.3.1g Beam-Plate Built-Up Structure with Edge Interface

Bending and In-plane deformation of a beam-plate built-up structure

under lateral load with two sides of the plate clamped and the other two

sides of the plate with beams free, as shown in Fig. 3.1g, are

considered. The same assumptions made in Subsection 3.3.1f are applied

to this model.

The design variables are the positions _ and _ of the beam

components a and b, respectively, as shown in Fig. 3.1g. The state

variable is the bending displacement w, the in-plane displacements

_, J ffix,y, of the plate component, and the bending displacements

i, _Iv i and v iffia,b, the axial deformations v , i = a,b, of the beam

components.
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Interface conditions similar to those of Fig. 3.1f are obtained in

Table 3.3 (Eqs. 3.55 to 3.?0).

3.3.1h Plane Elastic Solld-Plate Built-Up Structure

with Interior Interface

Bending and in-plane deformation of clamped plates under lateral

load connected by plane elastic solids with fixed boundaries, as shown

in Fig. 3.1h, are considered. Boundary movements of the plate

components a and b cause movements of the entire domains of the plane

elastic solids c and d. It is presumed that the plane elastic solids c

and d do not bend in the y-dlrectlon during shape variation.

The design variable is the location _ of the plane elastic solids c

and d. The state variable is the same as defined in Subsection 3.3.1f

for plate components a and h and in-plane displacements w_4j ifc,d

Jfx,z of the plane elastic solids c and d. The same notations are used

to identify the corresponding adJolnt variable, as defined In Subsection

3.3.1f.

Interface conditions are obtained in Table 3.3; i.e., the dis-

placement (bending and in-plane) and normal slope are continuous at

I
y , iffil-3 (Eqs. 3.71 and 3.72), bending moment (shear force) is con-

tinuous (in equilibrium in force system) at yl (Eq. 3.73), corner forces

and tractions are in equilibrium at yi, iffi2,3 (Eqs. 3.74 and 3.75), and

the in-plane forces are in equilibrium at yi, iffil-3 (Eq. 3.76).

3.3.1i Plane Elastic Solid-Plate Built-Up Structure

with Edge Interface

Bending and in-plane deformation of a plate under lateral load wlth

two sides clamped and the other two sides connected by plane elastic
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solids a, b, c, and d, with fixed boundaries, as shown in Fig. 3.11, are

considered. Boundary movement of the plate component causes movement of

entire domains of the plane elastic solids a, b, c, and d.

The design variables are locations _ and _ of plane elastic solids

c and d, and a and b, respectively as shown in Fig. 3.11. The state

variable is the bending (in-plane) displacement w (w"¢I, i = x,y) of the

plate components and the in-plane displacements w_lj, i=a,b,c,d, j=x,z

for i=a,b and j=y,z for i=c,d of the plane elastic solids. The same

notations are used to identify the corresponding adjolnt variable, as

defined in Subsection 3.3.1f.

Interface conditions are obtained in Table 3.3 (Eqs. 3.77 to 3.83).

3.3.2 Shape Design Sensitivity Forms

3.3.2a Beam-Truss Built-Up Structure with Interior Interface

Consider a displacement response functional defined in _a as

_(x-x)zd_

a _a
(3.84)

A ^

where x e _a is presumed to be a fixed point and 6(x) is the dlrac

measure. Since 6(x-x) in Eq. 3.84 is defined on a neighborhood of _a by
!

^ _ ^zero extension and x is fixed, (x-x) = O. Thus Eq. 3.84 can be

treated as the functional form of Eq. 2.63 and the adjoint equation

is, from Eq. 2.70,

a(X,_) = .[ a_(X-x)id_ (3.85)

for all _ _ Z. Equation 3.85 has a unique solution 4, which is the

A

displacement due to a unit load at x. That is, with smoothness
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assumptions, the variational equation of Eq. 3.85 is equivalent to the

formal operator equation

(Elblbxx)xx 0 , x _ _b (3.86)

where I satisfies all the boundary conditions of Eqs. 3.23, 3.33 and

3.34 in Tables 3.1 and 3.3.

One can write the shape design sensitivity form of Eq. 3.10 as

i=a,b

(3.87)

Integrating terms in the domain integral of Eq. 3.87 by parts, one has

!

m_a
tffia,b

i ii (EI tZfxx)xx(_ivi)[ t [(sIi_xx)xx(zx v ) +

+ l [EIi :,. i>2i + EIizI
l=a,b

-(Eli_L)x(Zx_ I)

-(EliZxix)x(_x_i) + (fill- ElizixxtL)vt]lyt

(3.88)

Then, from the formal operator equations of Eqs. 2.1 and 3.86, one

obtains the final shape design sensitivity form, by imposing the

interface conditions of Eqs. 3.33 and 3.34 in Table 3.3, as
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!

a ira, b

[ EIiz i ii
XX XX

at the interface _.

_ (EIiXi) z i _ (Eiiz i ) xi + ffti]vi IXx x x xx XX

(3.89)

If the outside boundary ri is not fixed, one obtains the shape

design sensitivity form as

Ya = _ (EIiz i X )V i pi (3.90)
iffia,b xx

at the clamped boundary ri, iffia,b from Eq. 3.23 in Table 3.1,

' i i vii
Ya= [ [ - (EIilixx x x) zi - (EIizxxlxlx I ]pf (3.911

iffia,b

at the simply supported boundary ri, iffia,b from Eqs. 3.21 and 3.22 in

Table 3.1, and

¥' ffi [ (fill) vi I (3.92)
a riifa,b

at the free boundary Fi iffia,bfrom Eq. 3.24 in Table 3.1

3.3.2b Beam-Truss Built-Up Structure with Edge Interface

The same procedure presented in Subsection 3.3.2a is applied to the

problem in Subsection 3.3.1b to yield the final shape design sensitivity

form at interface y , by using the interface conditions of Eqs. 3.35 and

3.36 in Table 3.3, as

!

Yb ffi [fl- (Ellxx)xZx- (ElZxx)xlx ] V17
(3.93)

If the outside boundary F is not fixed, one can obtain the same shape

design sensitivity forms at r as in Eqs. 3.90 to 3.92 depending on the

outside boundary conditions.
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3.3.2c Plate-Truss Built-Up Structure with Edge Interface

Consider a stress response functional defined in fla instead of a

displacement response functional for the present model. The maximum

bending stress for a plate occurs on the surface of the plate and is

given in the form

Eh

o = YYx 2(1_v2) (Zxx + vz ) (3.94)

where o is taken as a strength constraint. One can extend the idea to
X

the Von-Mises failure criteria, which will be treated in Chapter 5. As

will be discussed in Section 4.3, one may use a characteristic function

Mp(X) defined on a small open subset of _p of _a to treat the polntwise

stress constraint. Then, the averaged value of o over this small
X

region is

ff oM dn
T == .,.,t" a
c xp

Eh

2(l-v 2) fffi a (Zxx + VZyy)Mpd_
(3.95)

Thus, Eq. 3.95 can be treated as the functional form of Eq. 2.63 and the

adjolnt equation is, from Eq. 2.70,

a(l,_) = Eh ff# (_ + _yy)Mpd_ (3.96)=

for all _ e Z • Equation 3.96 has a unique solution _ [5]. With

smoothness assumptions, the variational equation of Eq. 3.96 is

equivalent to the formal operator equation

DV4_a ffi Eh (M + vM ), x • fla

2 (I- 2 ) Pxx Pyy

DV4A b = 0 , x • _b

(3.97)



70

where I satisfies all boundary conditions of Eqs. 3.29, 3.30 and 3.37 to

3.42 in Tables 3.1 and 3.3.

One can write the shape design sensitivity form of Eq. 3.10 as

!

+= I ff
c _iifa, b

{Di[lixx((VziTVi)xx + ,_(7ziTvi)yy) + Ii
YY

× ((vzITv i) + v(vziTvl)xx )
YY

+ 2(1_.)z_(VziZVl)xy+ (v_iTvl)=Cz_x+ lyy)

+ (v_izvl)(,i .._) 2(I-.)(iT i i ]YY YY + + Vl V )xyZxy

_ fi(vAiTvi ) +
T

Eh (Mpxx + uM )(Vza va)}d_2( I-_2) Pyy

frluY i i _zi ) i i _zi
+ _ 2{fi_ i - Di[lxx(Zxx + + +

i=a ,b YY IYY (zYY xx )

+ 2(1-_)I i zi ]} (viTni)dr
xy xy

(3.98)

Integrating terms in the domain integral of Eq. 3.98 by parts, one has

!

_c == Y" ffi
i=a,b

{Di[V4Ai(vziTvi) + V4zi(vAiTvi)]

T
_ fi(v_iTv i) + Eh + _ )(Vz a va)}dR

2(i_u2) (Mpxx Pyy

+ [ Di[(xi +vii )(vziTv i) +(z i +_z i )(vxiTvi)x
i=a,b friuy2 xx yy x xx yy
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T

xyy xxx

+
iT i i i

[ Ir i Di[(l i +Vllxx)(Vz V )y+(Zyy+VZxx)(VlITVi)y
ifa,b YY

-( liyyy+(2- v) llxxy)(vziTvi)- (Zlyyy+(2- 9)Zlxxy) (vliTvi) ]dx

+ { 2(1-v)Da[l a (Vz a V a) + za (V_ a va)]
xy xy C

T

+ 2(1-'j)Db[Iby (vzb vb) + zbxy(vtbTvb)] l
Y

T f- 2(l-_))Da[l_(Vz a V a) + za,(Vl a va)]
xy C2

b vzbTv b) + zby(WbTvb)]- 2(l-'j)sb [Ixy ( 3
Y

T T

- 2(l-u)Da[xxay (vza va) + Zaxy(vla va)] I
Y

- 2(l-v)Db[_by(VzbTvb) + zb(vlbTb)]IC 3

T T

+ 2(l-_)Da[l a za ,(ala va)]
xy (vza va) + xy 3

Y

+ 2(l-v)Db[hbxy(vzbTvb) + zb (vIbTvb)]
xy C4

+ 2{fll i - Di[l I (zi + _zly yy YYxx xx y) + II (zl + _'Zlxx)
fri v

2(l-u) i i }(viTni)dr
+ IxyZxy]

(3.997
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where CI, C2, C3, and C4 are corner points of the rectangular plate

components as shown in Fig. 3.1c.

From the formal operator equations of Eqs. 2.17 and 3.97, one

obtains the shape design sensitivity form, by imposing the interface

conditions of Eqs. 3.37 to 3.42 in Table 3.3, as

c 2
T

za )Va + (fblb+Db_b zbx)Vb]dy[(fala+DaAaxx xx xx

+ {[fala - 2(l-v)Da(X a z a + z: _:)]V axyx y

bb I+ [fblb + 2(l-v)Db(Ibxyzb+ Zxylx)]V b}x I
T

+ {[fala + 2(l-v)Da(l a za + za la)]v a
xyx xyx

+ [fblb- 2([-v)Db(Ibxyzb+ zb Ib)]vb}l 3
x xy

(3. [00)

i
at the interfaces _ , i- I-3.

If the outside boundary _ is not fixed, one may obtain the shape

design sensitivity forms as

' i i i xl

¥c = [ /r i (D (IxxZxx)V dy + 7i=a,b i=a,b

f i(Dil i zi )vYldx
r YY yy

at the clamped boundary ri from Eq. 3.29 in Table 3.1,

(3.I01)

- I
i=a, b

D i ii ix ziJ"i [( + + (zl
r _x_ yy) x xxx

+ vzl ) i xl
xyy lx]V dy

+ VZlxxy) kiy]vyldx

at the simply supported boundary ri from Eqs. 3.27 and 3.28 in

Di[(l i + _Ii )zl + (z if
i yyy xxy y yyy

r

(3.102)
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Table 3.1, and

' ) (viTn i)d r
¥c = [ f i (fili (3.103)

ifa,b r

at the free boundary rl from Eq. 3.30 in Table 3.1.

3.3.2d Plate-Truss Built-Up Structure with Corner Interface

The same procedure presented in Subsection 3.3.2c is applied to the

problem in Subsection 3.3.1d, to yield the shape design sensitivity form

at the interface _, by using the interface conditions of Eqs. 3.43 and

3.44 in Table 3.3, as

Iffi - + z Ix)IV (3.104)_d [f_ 2(l-v)D( _xyZx xy

3.3.2e Plane Elastic Solld-Truss Built-Up Structure

with Corner Interface

The same procedure presented in Subsection 3.3.2c can be applied to

the problem in Subsection 3.3.1e to yield the shape design sensitivity

form at the interface _, by using the interface conditions of Eqs. 3.45

and 3.46 in Table 3.3, as

!

¥
e

ffi{ [ Fik i _ [ [aiJ(z)elJ(_)] }(vTn)

ifx,y i,Jffix,y

+ _ [olJ(1)nJ(vzTv) + oiJ(z)nJ(v_Tv)]l

i,Jfx,y 1

(3.105)

If the outside boundary r is not fixed, one may obtain the shape

design sensitivity forms as

!

Ye [
i,]ffix,y

[olj(z)elj(_)](vTn)

+ _ [oiJ(_)nJ(vzTv) + oi](z)nJ(v_Tv)]Ir (3.106)
l,Jfx,y
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at the fixed boundary F from Eq. 3.31 in Table 3.1 and

Y'e = _ (Fiki)(vTn) I F
lfx,y

at the free boundary F from Eq. 3.32 in Table 3.1.

(3.1o7)

3.3.2f Beam-Plate Built-Up Structure with Interior Interface

Consider a displacement response functional defined in _a as

wf = ff_a 3(x-x)wd_ (3.108)

Wlth the same procedure described in Subsection 3.3.2c, the adjolnt

equation is, from Eq. 2.70,

a(,_,_) = ff a _(x-x)wdIl (3.109)
II

for all _ e Z, which is equivalent to the formal operator equation

Dav4 ,a -

Dbv4w b = 0

l - o,
i=x, Y

i ffi x,y , X _ flk , k ffi a,b

>

(3.110)

where I satisfies all the boundary conditions of Eqs. 3.23, 3.25, 3.29,

3.31, and 3.47 to 3.54 in Tables 3.1 and 3.3.

The shape design sensitivity fom of Eq. 3.10 is obtained, by using

the state and adJoint variables defined in Subsection 3.3.1f, as
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V

_f = f 1 {zII(vxvX)xxVxx
¥

+ Vxx(vxvX)xx]

+ GJ [ (vxVX)xyVxy + Vxy(vVX)xy ]

÷  . tcLv  jx+

+ k -k k T k v(vwkTVk)yy)

+ 2(l-v)Wkxy(VwkTVk)xy + (_kTvk)xx(wkxx + vwkyy)

+ (_kTv k) (k + wak ) + 2([_v)(_kTv k) k ]
yy yy xx xy xy

+

i,j=x,y

- fk(_kTv k) - _. Fki< _kTv k) - _(x-x)( VWaTva)}d_l

i=x, Y

4"

k=a _b

j. l{fkwk _k,-k , k vwk ) wk (wk + _wk- IJ tWxxtWxx + + )
yy yy yy xx

Fi_ i

xy i=x,y

- _. [aiJ (w_k)_tJ (_k) ]}(vkTnk) d r

i,J=x,y

(3.111)
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Since the outside boundary ri is presumed to be fixed, boundary terms

at ri are omitted in Eq. 3.111. Integrating terms in the domain

integral of Eq. 3.111 by parts, one has

Yf f I [(ElVxx)xxCvxVX) + (ElVxx)xx (Vx Vx)

V

(;=yVv x + V=y_v x)

+

+

ff k_DktV4_k<_kTVk_+ v4}<_kTvk)1
k=a, b

_v_ + _
- [ [ajiJ(w )( _j" (w_k)(vw"kTvk)]

i,J=x,y

_ fk (v_kTvk ) v
L

l=x, y

^

=ki,__k T, k_ _ _(x-x)(Vw aT_VW V , va)}d_

Dk[(w k + _l)(vwkTVk)y + (wk + _wkxx)(VwkTVk)yf
- 1 yy YY
Y

T T v_bTv b )

+ {2( [-9)Db [wbxy (vwb Vb) + wb ( ]Iy,xy 2

T T l- 2(1-9)Da[way(vwax va) + wa (v_a va)]
xy Y

2

- 2(l-v)Db[wbxy(vwbTvb)+ w b ,(_bTvb)]]yxy 3
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T T

+ 2(l-_)Da[w:y(ywa va) + Waxy(y_a va)]l 3 1
Y

+ _ f 1 {(fkw k + _ Fki_i)(vkTnk)

k--a,b _ i=x,y

_k,-k , k + k +wk , k kxx) +- u tWxxtWxx VWyy) yytWyy + 2(l-v)w k wk ](vkTn k)
xy xy

+ y
i,J=x,y

[oiJ(_)nJ(yw_kTvk) + 0 ij(w_k)nj(_kTVk)]

_. [ oiJ (_) eiJ (_) ] (vkTnk) }dx (3.112)

i,j--x,y

Boundary terms at the outside boundary Fi are omitted in Eq. 3.112,

since the outside boundary ri is presumed to be fixed.

From the formal operator equations of Eqs. 2.17, 2.25 and 3.110,

1
one obtains the shape design sensitivity form at the interface y , by

imposing the interface conditions of Eqs. 3.47 to 3.54 in Table 3.3, as

' k k-k_f = _ f 1 {[fkwk + Dk(wkw - w w - (wk +
k=a,b $ YY yy xx xx yyy xxy y

- (wk
YYY

÷ I
J=x,y

k -k ]vkY
+ VWxxy)Wy)

[ YJ(_)nJ(w_TV ky) +

+ IFky wkY- (

J=x,y

YJ (w_k)nJ (_yTVkY) ]

YJ(wk) _J (wk) )]V ky }dx (3.113)

3.3.2g Beam-Plate Built-Up Structure with Edge Interface

The same procedure presented in Subsection 3.3.2f is applied to the

problem in Subsection 3.3.1g to yield the shape design sensitivity form

i
at the interface y , i=1,2, by imposing the interface conditions of
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Eqs. 3.55 to 3.70 in Table 3.3, as

m

' {[f_+ D(Wxx_ - w w_'_fl = yyyy
Y

- (Wxxx + _xyy)Wx

- (Vxx x + _xyy)wx)lV x

+ y.
J=x,y

-- I

+ [Fx _xe - ( _ _XJ(w)¢XJ(w))]vX}dy

J=x,y

yyW+ f2 {f_+D(w yy-W_x _
7

- (Wyyy + _xxy)Wy

- (Wyyy + Wxxy)Wy)]VY

.4- tJJ(_.).J(_v_) + JJ(:)J(_v_)l

w

+ [FYw_/- ( _ oYJ(w)cYJ(w))]vY}dx

J=x,y

(3.114)

3.3.2h Plane Elastic Solld-Plate Built-Up Structure
with Interior Interface

Consider a displacement response functional defined in _a as

vh = ff _(x-x)wdfl (3.115)
_a

With the same procedure discussed in Subsection 3.3.2c, the adjoint

equation is, from Eq. 2.70,

a(),,_) ffi ff_a _(x-x)w d_ (3.116)
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for all _ • Z, which is equivalent to the formal operator equation

DV4 bwb=0 , x _

lJ _k i=x,y, x k=a,b !

- I oj(w)-o, •_k,
j--x,y

lj _k
- Y. Oj (w) = 0 , i=x,z , x eftk , k--c,d

J=X,Z

(3.117)

where I satisfies all the boundary conditions of Eqs. 3.29, 3.31, and

3.71 to 3.76 in Tables 3.1 and 3.3.

The shape design sensitivity form of Eq. 3.10 is obtained, by using

the state and adJoint variables defined in Subsection 3.3.1h, as

' -- f;ak
k=a, b xx yy

yy ( )yy xy

yy xx

i,J=x,y

k=a,b yl xx xx yy yy
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+ 2(1-_)w k wk + _ Fki_ i

xy xy i=x,y

- [ [ oiJ (w_k)ciJ(_)] } (vkTnk)dx

i,J=x,y

+
ffk K

k=x,d i,J--x,z

i=X, Z

(3.118)

Since the outside boundary ri is fixed, boundary terms at r_ i=a-d, are

omitted. Integrating the remaining terms in the domain integrals of

Eq. 3.118 by parts, one has

' = ff {Dk[
Yh I _k v4wk (vwkTvk) + v4wk(_kTvk) ]

kfa, b

oj (w)( ]
i,J=x,y

_(_Tv_)- x F"(# L_)- _(x-;)(_a_va)__
i=x,y

+ f l Dk[(wkyy ÷ _'L )( vwkTVk)y * (w_ry + _kxx)( Vw_jkTVk)y
V

-(wkyyy + (2-v)WLy)(VwkTv k)

-(¢yy+ (2-v)w_)(_kTvk)] dx

+ {2(1-v)Db[wb(vwbTvb) + by( vwbTv b) ]] 2
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+

T T Ia -a a

- 2(I-_)D [Wxy(VW V a) + w a (_a va)] 2
xy Y

_ 2(l-v)Db[wby(VwbTvb)+ wbxy(_bTvb)] Iy3

T T I
+ 2(l_v)Da[wax.(Vway va) + Wxy(a _a va)] Y3}

I f 1 {(fkwk + I Fki_i) (vkTnk)

k--a,b y i=x,y

_k,-k , k _wk ) -k k _wk
- _ [WxxtWxx + + + xx )YY Wyy (Wyy

+

+

+ 2(l-_)wk wk ](vkTn k)
xyxy

I
i,j=x,y

[ij(_)lj(_k)j(vkZk)}dx

k=c,d _ i,j=x,z

ij _k _Tvk ) iJ (_) (L_kTvk) ]
[oj (w)( + oj

- I Fki(_Tvk) }d_

i=x, z

(3.119)

Boundary terms at Fi, i=a-d, are omitted, since the outside boundary is

fixed.

From the formal operator equations of Eqs. 2.17, 2.25 and 3.117,

1

one obtains the shape design sensitivity form at the interface y , by

imposing the interface conditions of Eqs. 3.71 to 3.76 in Table 3.3, as
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' _ -k vwkxx)_kYh = _ f I {[fk_k Dk((_k + wa )wk + (wk + )]Vk
k=a, b y yyy xxy y yyy y y

J=x,y Y Y

+ [FkYwky - _. _YJ(w_k)cYJ(w'k)]vk}dx

j=x,y

(3.120)

3.3.2i Plane Elastic Solld-Plate Built-Up Structure

with Edge Interface

The same procedure presented in Subsection 3.3.2h is applied to the

problem in Subsection 3.3.1i to yield the shape design sensitivity form

i
at the interfaces y , i=1,2, by imposing the interface conditions of

Eqs. 3.77 to 3.83 in Table 3.3, as

!

¥i = fY2 {[f_ + D(WxxWxx - (Wxxx + VWxyy)Wx - (Wxxx + VWxyy)Wx)- ]vX

+ y. to J( )nJ(Lvx) + vX)j_xJ (_)nJ (_

J=x,y x

+ [FX_ x - _ XJ(w)¢XJ(w)]vX}dy

J=x,y

+ f 1 {[fw ÷ D(Wyy_yy - (Wyyy + Wxxy)Wy -
Y

(Wyyy + Wxxy)Wy)]VY

+ _ [oYJ(w)nJ(_V y) + arVJ(w)nJ(_ vY)]
J=x,y Y

+ [FYw_y _ _.

J=x,y

m

oyj (w) £YJ (w) ]Vy }dx (3.121)



83

C_dAPTER 4

NUMERICAL CONSIDERATIONS IN DESIGN SENSITIVITY

CALCULATIONS

4.1 Introduction

The formulation presented in Chapters 2 and 3, using distributed

parameter theory for design sensitivity analysis and the finite element

method for structural analysis, provides a tool to check for numerlcal

errors in finite element analysis. One can predict the effect of a

design change that is to be implemented with the design sensitivity

analysis method. When reanalysls is carried out, one can compare the

predicted change in structural response with the change realized. If a

disagreement arlses_ then error has crept in the numerical approxi-

mation. If one carries out design sensitivity analysis directly with

the matrlx/flnlte element method, in which the structure is dlscretized

and the design varlables built into the global stiffness matrix, then

any error that is inherent in the finite element model is consistently

parametrlzed. Therefore, one obtains precise design sensitivity

coefficients of the matrix model of the structure, without reallzing

that there is substantial inherent error in the original model. In

fact, as optimization is carried out, the optimization algorithm may

feed on this error and lead to erroneous designs. In the current

formulation, one can use the design sensitivity formulas derived from

distributed parameter structural theory and the finite element
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model to obtain a warning that approximation error is creeping into the

calculation.

Before going to numerical calculations of structural analysis and

design sensitivity analysis of complex built-up structures, it is

helpful for the designer to investigate inherent numerical aspects

involved in finite element analysls and design sensitivity analysis of

structural components.

Finite element analysis and the associated characteristics of

simple beams and plates are presented in Section 4.2, to gain insights

for design sensitivity calculations of a beam-plate built-up

structure. Gauss quadrature and accurate stress computations are also

discussed in Section 4.2. A characteristic function is introduced to

treat stress constraints in Section 4.3. Element boundary movement

effects for shape variations, using the msterlal derivative idea are

considered in Section 4.4. In Section 4.5, a sparse matrix symbolic

factorlzation method for Iteratlve analysis is outlined. Finally,

numerical calculation of design sensitivities for a beam-truss built-up

structure is carried out and results are tabulated in Section 4.6.

4.2 Accuracy and Characteristics

of the Finite Element Method

In structural optimization, the state and adJolnt equations are

solved numerically using the finite element method, which is regarded as

a versatile tool to solve these equations. The importance of

maintaining acceptable accuracy in finite element analysis cannot be



85

overstated, since design sensitivity coefficients are evaluated from the

finite element analysls results.

For fourth order boundary-value problems that arise in the case of

beam and plate bending, the design sensitivity coefficients include up

to third derivatives of displacement functions, as shown in Chapter 3.

Hence, it is important to employ appropriate finite elements and the

associated shape functions to get accurate values of displacements and

their derivatives needed in calculating design sensitivities.

Partlcularly in shape design sensitivity analysis, good approximate

values related to the design sensitivity coefficients that are evaluated

at the boundary or interface are required, since they can be

slgnificantly in error, depending on the shape functions employed.

In this section, accuracy and the associated characteristics of the

finite element method for simple beam and plate bending problems are

discussed, based on the dlsplacement method, since the displacement

method formulation of the finite elements matches the theory of design

sensitivity analysis presented in the preceding chapters. Some remarks

on Gauss quadratures and stress computations are also discussed in this

section.

4.2.1 Finite Element Analysls of a Beam

Beams serve as structures in their own right and also serve as ribs

and edge stlffners for plates and shells. Many researchers have tested

new optimization methods with a slmple beam bending problem. In most

cases, cubic shape functions are employed with successful results.
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However, for shape design sensitivity analysis, it is worth while to

investigate the finite element method and.its characteristics for a

simple beam bending problem.

Consider a simply supported beam subject only to bending, as shown

in Fig. 4.1. The finite element method with cubic shape functions

allows the displacement function and its first derivative to be

continuous between elements. In a normalized interval connecting points

i and J, with coordinate _ - x/L, as shown in Fig. 4.2, one seeks to

construct a function v(x) that will satisfy conditions on displacement

and its first derivative at the end points. This function can be

written in cubic form as

v - _I + a2x + a3x2 + _4 x3 (4.1)

!

This will define the shape functions corresponding to vi and vi by

taking for each a cubic with unit value at the appropriate points

(x - O;L) and zero at other points. The shape function in this case is

of the form

N i - [1 - 3_ 2 + 2_ 3, x(_ - 1) 2 ] "_

(4.2)

Nj = [3_ 2 - 2_ 3, x(_ 2 - _)]

If the displacement function has to satisfy up to second derivative

continuity at the nodal points, it can be written as a qulntic,

v = B1 + B2x + B3 x2 + B4 x3 + _5x4 + B6x5 (4.3)
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L L

Figure 4.1 A Simply Supported Beam

vi vj

! !

vi vj

i j

Figure 4.2 Degree of Freedom for Cubic Shape Function
in One Dimensional Beam
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The shape functions in this case are fifth order polynomlals that

can be written in a normalized interval with coordinate n ffix/L, as

shown in Fig. 4.3, as

L2Ni - [1-10n3+15n4-6n 5, L(n-6n3+8n 4- 3n5), _ (n2-3n3+3n4-n5)

L2 (4.4)

Nj [10n3-15n4+6n 5 , L(-4n3+7n4-3n 5) , _ (n3-2n4+n5)] .._

To test accuracy of the finite element method using cubic and

quintic shape functions, a simply supported beam with rectangular cross

section of Fig. 4.1, with the finite element model of Fig. 4.4, is used

to illustrate how approximate solutions of the finite element method

compare with analytical solutions.

Three different loading conditions are applied, to compare

numerical results of up to third derivatives of displacement func_ions

with those of the analytical solution, since the loading conditions

(either static or adJoint load) in design sensitivity calculations are

one of the following loads: point load, distributed load, point moment,

or some combination of these.

Numerical data for this problem are as follows: beam length

L - I00 in., beam height h - I in., beam width d ffi0.4 in., Young's

Modulus E - 3×107 psi, the uniformly distributed load f ffi0.I ib/in, for

Case I, point load at center P - 5 lb for Case 2, and point moment at

center M - -5 in.-Ib for Case 3.

Numerical results are tabulated in Table 4.1, where A denotes the

analytical solution, C denotes the numerical solution using cubic shape

functions, and Q denotes results with qulntlc shape functions.
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vi vj
t !

vi vj
I! I!

v t v

L _

Figure 4.3 Degree of Freedom for Quintic Shape Function
in One Dimensional Beam

I 2 3 4 5 6 7 8 9 I0 ii

Figure 4.4 Finite Element Model of a Simply Supported Beam
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Table 4.1 Comparison of Analysis Results for Simply Supported Beam

Case 1

iElmnt
No. X Vxx Vxxx

(I) O.

L

(2)

(3)

(4) 30.

(5) 40.

C 0.833E-06 -0.450E-05

-0.500E-05"

Q 0.O00E 00 -0.500E-05

A 0.O00E O0 -0.500E-05

I0. C -0.458E-04 -0.350E-05

-0.400E-05"

Q -0.450E-04 -0.400E-05

A -0.450E-04 -0.40OE-05
20. C -0.808E-04 -0.250E-05

-0.300E-05"

Q -0.800E-04 -0.300E-05

A -0.800E-04 -0.300E-0_

C -0. I06E-03 -0.150E-05

-0.200E-05"

Q -0.105E-03 -0.200E-05

A -0.I05E-03 -0.200E-05

C -0.121E-03 -0.500E-06

-O. IOOE-05*

Q -0.120E-03 -0.100E-05

A -0.120E-03 -O. IOOE-05

X

I0.

20.

30.

40.

50.

C

Q -0.450E-04

A -0.450E-04

C -0.808E-04

Vxx Vxxx

-0.458E-04

Q -0.800E-04

A -0.800E-04

C -0.106E-03

Q -0. I05E-03

A -0.I05E-03

C -0.121E-03

[Q -0.120E-03

A -0.120E-03

C -0.126E-03

Q -0.125E-03

A -0.125E-03

-0.450E-05

-0.400E-05"

-0.400E-05

-0.400E-05

-0.350E-05

-0.300E-05"

-0.300E-05

-0.300E-05
-0.250E-05

-0.200E-05"

-0.200E-05

-0.200E-05
I-0.150E-05

-O.IOOE-05*

-0.100E-05

-0.!00E-05

-0.500E-06

0.O00E 00"

-0.740E-15

0.O00E O0

i:£1mnt .....

No. X

(I) o.

(2) 10.

(3) 20.

(4) 30.

(5) 40.

Case 2

Vxx

C -O.486E-16

Q O.O00E O0

A O.O00E O0

C -0.250E-04

Q -0.250E-04

A -0.250E-04

C -0.500E-04

Q -0.500E-04

A -0.500E-04

C -0.750E-04

Q -0.750E-04

A -0.750E-04

C -O. IOOE-03

Q -0.I00E-03

A -O.100E-03

Vxxx

-0.250E-05

-0.250E-05

-0.250E-05

--0.250E-05

.0.250E-05

-0.250E-05

-0.250E-05

-0.250E-05

-0.250E-05

-0.250E-05

-0.250E-05

-0.250E-05

-0.250E-05

-0.250E-05

-0.250E-05

X

I0.

20.

30.

40.

50.

C

Q
A

C

Q
A

C

Q
A

C

Q
A

C

Q
A

Vxx Vxxx

-0.250E-04 -0.250E-05

-0.250E-04 -0.250E-05

-0.250E-04 -0.250E-05

-0.500E-04 -0.250E-05

-0.500E-04 -0.250E-05

-0.500E-04 -0.250E-05

-0.750E-04

-0.750E-04

-0.750E-04

-O.IOOE-03

-O.100E-03

-O.IOOE-03

-0.125E-03

-0.125E-03

-0.125E-03

-0.250E-05

-0.250E-05

-0.250E-05

-0.250E-05

-0.250E-05

--0.250E-05

-0.250E-05

-0.250E-05

-0.250E-05
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Table 4.1 Continued

Elmmt
No. K

(I) O. C -0.298E-18

Q O. O00E O0

A O. 000E 00

(2) I0. C -0.500E-06

Q -0.499E-06

A -0- _OOE-06

(3) 20. c -o.looz-os
Q -0.I01E-05

A !-0. IOOE-05

(4) 30. C -0.150E-05

Q -0.146E-05

A -0. 150E-05

40. c-o.2ooz-o5
I Q -0.232E-05

A -0.200E-05

Case .3

Vxx Vxxx X

-0.500E-07 I0. C

-0.499E-07 Q

-0.500E-07 A

-0.500E-07 20. C

i-O.515E-07 Q

-0. 500E-07 A

-0.500E-07 30. C

-0. 383E-07 Q

--O.50OZ-07 A

-0. 500E-07 40. C

-0. 142E-06 Q

-0. 500E-07 A

-0 •500E-07 50 • C

0.672E-06 Q

-0.50OE-07 A

Vxx Vxxx

-0.500E-06 -0.500E-07

-0.499E-06 -0.496E-07

-0.500E-06 -0.500E-07

-0.100E-05 -0.500E-07

-O.IOIE-05 -0.537E-07

-0.100E-05 -0.500E-07

-0.150E-05 -0.500E-07

-0.146E-05 -0.207E-07

-0.150E-05 -0.500E-07

-0.200E-05

-0.232E-05

-0.200E-05

-0.250E-05

0.369E-17

-0.250E-05

-0.500E-07

-0.280E-06

-0.500E-07

-0.500E-07

0.176E-05

-0.500E-07
I

Vxx : Second derivative

Vxxx : Third derivative

* : Extrapolated values

of displacement function V

of displacement function V
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Table 4.1 shows that the finite element results are in reasonably good

agreement with analytical solutions, except the following features.

When a cubic shape function is employed for a uniformly distributed

loading condition, third derivatives of displacement have constant

values throughout finite elements, since the order of shape functions is

3. Considering that the shear force of a beam varies linearly, one can

extrapolate these constant (average) values at the nodal points for

uniformly distributed load. Then, these extrapolated values can be the

same as those of the analytical solution. Another feature to note is

that when a quintic shape function is employed for a point moment

loading condition, the second derivatives of displacement at the nodal

points are continuous in adjacent finite elements, which contradicts the

existence of external applied moment.

4.2.2 Finite Element Analysis of a Plate

As in the case of beams, plates serve as structures in their own

right. They also serve as structural components for complex built-up

structures. In plate bending problems, one is required to choose a

method among various existing finite element methods in analysis, since

characteristics of plate are much more complicated than in the case of

beam. A large number of conforming and non-conformlng elements have

been used to solve thin flat plate bending problems. In most cases, the

simplest nodal degrees of freedom are used; i.e., only displacements and

their first derivatives, as in the case of a beam, and such elements are

admirably suited for an extension to shell problems and indeed to other

situations demanding C 1 continuity.



93

Figure 4.5 [73] shows convergence of rectangular and triangular

elements for the case of a simply supported plate under a concentrated,

central load. A process, leading to a necessary condition for

convergence, has been proposed. This process, known as the "patch test"

developed by Irons [83], has first been studied from a mathematical

standpoint by Strang [84], Ciarlet [6], and others.

Consider a simply supported plate subject to bending only, as shown

in Fig. 4.6. A non-conforming rectangular element [73], with sign

convention and nodal order specified in Fig. 4.7, is employed.

The displacement function for a plate, under usual thin plate

theory, is uniquely specified once the deflection w is known at all node

points and can be written in general form as

w = Na e (4.5)

where ae contains the element(nodal) parameters ae

where

Ii(Ty)i
 yiJ i

T

= [ai,a j,ak,a I] ,

(4.6)

The nodal 'forces' corresponding to displacement can be interpreted

as a direct force and two couples, as shown in Fig. 4.7.

It is impossible to specify simple polynomial expressions for shape

functions that ensure full compatibility, when only w and its slopes are

prescribed at nodes. If any functions satisfying compatibility are
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(a) Rectangular Elements

4J

t_

t_

O

0

-1

\
(M2)

N= 1

\

N=3

(b) Triangular Elements

(A) 12 DOF Nonlconformlng [74,75]

(B) 16 DOF Hermltian-conforming [76]

(c) 16 DOF Conforming [77]

(MI) Mixed Linear M/w [78 ]

(M2) Mixed quadratic m/w [78]

(i) 6 DOF Non-conforming [79 ]

(2) 9 DOF Non-conforming [80 ]

(3) 9 DOF Non-conforming [81 ]

(4) 12 DOF Non-conformin_ [81 ]
(5) 9 DOF Conforming [80J

(6) 9 DOF Conforming [81 ]

(7) 12 DOF Conforming [82 ]

Figure 4.5 Comparative Errors-Thin Plate, Simply Supported,

Central Load
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Figure 4.6 A Simply Supported Plate
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Figure 4.7 A Rectangular Plate Element
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found with the three nodal variables, they must be such that at corner

nodes they are not continuously dlfferentlable and the cross derivative

is not unique. This fact is important in calculating shape design

sensitivity of built-up structure that involve plate components. A way

out of this difficulty is to specify the cross derivative as one of the

nodal parameters, regarded as a conforming element suggested by Bogner

et al. [76].

A polynomial expression is conveniently used to define shape

functions in terms of 12 parameters, in which certain terms must be

omitted from a complete fourth order polynomial, as

_4x2 9 3 _ 2w = _i + a2 x + _3y + + _5xY + _6y_ + _7x + _sX'Y + _gXy

3 3 3
+ =I0 y + _Ii x y + _12xY (4.7)

In particular, along lines x = constant or y = constant, the

displacement w varies as a cubic. The element boundaries are composed

of such lines. This characteristic can give complete information to the

ribs (beams) as in the case of a beam-plate built-up structure. Hence,

by taking advantage of cubic shape function over higher order shape

function as in the case of simple beam, one can apply the Hermlte cubic

shape function to the plate and related built-up structure problems.

One should note that slope continuity is satisfied only at the nodal

points, not at the element boundaries. This property is important when

cubic shape functions are employed, since one must resort to a technique

such as averaging of slopes at the element boundaries of the plate.
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It is interesting to investigate the behaviour of derivatives of

the displacement function, which are related to the design sensitivities

of built-up structures involving plate components when a cubic shape

function is employed. Taking derivatives of Eq. 4.7 with respect to x

and y, successively, one obtains

2 2 2 3
w x " a2+2.4X+asY+3_Tx +2a8xY+_gY +3allX Y+al2Y

2 2 3 2

Wy = a3+a5x+2_6Y+_x +2_xy+3aloY +all x +3al2xY

(4.8)

(4.9)

Wxx = 2a 4 + 6a7x + 2asY + 6allXY (4.10)

= 3allX2 2Wxy a 5 + 2a8x + 2_9Y + + 3a12Y
(4.11)

Wyy = 2a 6 + 2a9x + 6aloY + 6al2xY (4.12)

Wxx x - 6a 7 + 6allY (4.13)

Wxxy - 2a 8 + 6allX (4.14)

w = 2a 9 + (4.15)xyy 6a12Y

Wyyy = 6alO + 6a12x (4.16)

Note that along lines x fficonstant in finite element, the bending

monent M and shear force V defined in Table 3.2 vary linearly. The
X X

same argument can be applied along lines y = constant. This llnearlty

allows one to take numerical advantage discussed for the beam in

previous section. The mixed derivative w varies in a quadratic way,
xy

which is generally evaluated at a plate corner, and needs special
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attention for more accurate evaluations. It is required to use an

appropriate numerical integration scheme to evaluate those values for

design sensitivities, using derivatives of displacement functions of

Eqs. 4.8 to 4.16. Thls will be discussed in the following sections.

The shape function can be obtained in terms of normalized

coordinates (see Fig. 4.7) as [73]

= 1 _ _2N I _ [(t 0 + l)(n o + I)(2 + _0 + nO - n2)'

a_i(_ 0 + I)2(_0 - 1)(_ + I),

brli(_ 0 + 1)(r_ 0 + 1)2(nO - 1)]

with
= (x - Xc)/a, . = (y- yc)/b

I_0 = _'_i ' no = n'nl (4.17)

As mentioned earlier in this section, It is impossible to devise a

simple polynomial function with only three degrees of nodal freedom that

will be able to satisfy slope continuity requirements. The alternative

of imposing curvature parameters at nodes has the disadvantage, however,

of imposing excessive conditions of continuity. Furthermore, it is

deslrable to limit the nodal variables to three quantities only. These,

with a simple physical interpretation, allow the generalization of plate

elements to shells to be easily interpreted. Also computational

advantages arise. The simple alternative is to provide additional shape

functions, for which second order derivatives have non-unique values at

nodes. Providing no singularities occur, convergence is assured. The
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21 degree of freedom triangular element is described by Argyrls [85],

Bell [86], Bosshard [87], Irons [88], and Visser [89]. The reduced 18

degree of freedom version is developed by Argyrls [85], Bell [86], and

Cowper et al. [90]. An essentially similar, but more complicated

formulation has been developed by Butlin and Ford [91] and mention of

the element shape functions is made earlier by Withum [92] and Fellipa

[82].

It is clear that many more elements of this type could be developed

and indeed some are suggested in the above references. A full study is

included in the work of Zenisek [93]. However, it should always be

borne in mind that they involve an inconsistency when discontinuous

variation of material properties occurs. Further, the existence of

higher order derivatives makes it difficult to impose boundary

conditions and indeed the simple interpretation of energy derivatives as

'nodal forces' disappears.

4.2.3 Remarks on Gauss Quadrature and Stress Computation

In design sensitivity analysis, one source of poor design

sensitivity stems from numerical integration error in evaluation of

stresses. A definite integral can be evaluated numerically by any of

several methods. Here only the Gauss method [94,95] is described, since

it has proved most useful in finite element work.

To approximate the integral

(4.18)

one can sample (evaluate) # at the midpoint of the interval and
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multiply by the length of the interval, as shown in Fig. 4.8a. Thus,

one finds I - 2_|. This result is exact if the function happens to be a

straight llne of any slope.

Generalization of Eq. 4.18 leads to the formula

I = f__ _d_ -WI_ 1 + W2_ 2 + ... + Wn_ n (4.19)

Thus, to approximate I, one evaluates $ = #(_) at each of several

locations _i' multiplies the resulting $i by an appropriate weight Wi,

and adds. Gauss's method locates the sampling points so that for a

given number of them, the greatest accuracy is achieved. Sampling

points are located symmetrically with respect to the center of the

interval. Symmetrically paired points have the same weight W i. Table

4.2 gives data for Gauss rules of order n = I through n = 3. Data for

higher orders can be obtained from most numerical methods textbooks. In

computer work, numerical data for the _i and W i should be written with

as many digits as the machine allows. In general, a polynomial of

degree 2n-I is integrated exactly by n-point Gauss quadrature.

In two dimensions, one finds the quadrature formula for

= _(_,_) by integrating with respect to _ and then with respect to n

I_II_l - I_II} 1,.

- [ Wj [_ Wi*(_i,nj) ] = [ [ WiWj*(_i,n j) (4.20)
j lj

In three dimensions, one has

I = fll Sll fll_ *(_ n,_)d_dnd_ IIIwiSwk ( i %)
ijk

(4.21)
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(a) one sampling

point

1

(b) two sampling

points
(c) three sampling

points

Figure 4.8 Gauss Quadrature Using One, Two, and Three

Sampling Points

Table 4.2 Sampling Points and Weights for Gauss Quadrature

Order n Location _i Weight W i

3

,

+0.57735 02691 89626

+0.77459 66692 41483

0.00000 00000 00000

.

1.00000 00000 00000

0.55555 55555 55556

0.88888 88888 88889
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One need not use the same number of Gauss points in each direction, but

this is most common.

It has been shown [96-99] that finite element stress predictions

are least accurate at element corners, more accurate at midsides (or

midface in solid elements), and most accurate at certain interior

points. These interior points can be used to define a stress field that

can be extrapolated to yield stress at element boundaries. A procedure

to obtain optimum points where stresses are most accurate is presented

in Ref. 99.

Table 4.3 lists optimal points for stress evaluation [100]. Figure

4.9 shows an example of their benefit [96]. In Fig. 4.9, the dashed

llne denotes correct transverse shear stress under uniformly distributed

load, while the solid llne denotes computed shear stress. Optimal

(Gauss) points are denoted by * symbols, at _ = P = + 0.57735 ......

One sees that stresses away from the optimal points define a parabola

that is grossly in error. But optimal points define a straight llne

that is essentially exact and is a least squares fit to the parabola.

It is suggested that stresses will be most accurate when the element

stiffness matrix is generated using the same Gauss points recommended in

Table 4.3 for stress calculation. To extrapolate stresses from Gauss

points, consider a one-dlmenslonal situation, the upper part of Fig.

4.9. In the span - P < _ < P one Interpolates llnearly between the

known stresses oI and _2 at stations 1 and 2.

= (4.22)
2 ] a2
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Table 4.3 Location of Optimal Points for Stress Calculation

Locations: Gauss Rule
Element

and/or Coordinates

Beam (Fig. 4.2)

Linear Plane (Fig. 4.10a)

Quadratic Lagrange (Fig. 4.10b)

Quadratic Plane (Fig. 4.10c)

Cubic Plane (Fig. 4.10d)

2 point (±pL/2 from center)

I point ( _ = n = 0)

2x2 ( _ = ±p, n= ±p)

2x2 ( _ =_p, n = ±p)

3x3 (9 points; see Table 4.2)

p = 0.55735 02691 89626

A

-p +P

I •

Figure 4.9 Portion of a Beam Modeled a Single Layer of Plane

Quadratic Elements
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(a) Linear Plane (b) Quadratic Lagrange
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x

(c) Quadratic Plane (d) Cubic Plane

Figure 4.10 Plane Elements
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where s is the natural coordinate s = _/P, so that s = -I at _ = -P and

s = +I at _ = +P. Again, P = 0.57735 .... To extrapolate to points A

and B, at _ - ±I one sets s = ±I/P. Thus, with o = oA and then

o = oB in Eq. 4.22,

°A 1 +'_
=2" 1

-F - llt1 +
(4.23)

Stresses OA, OB, oi, and _2 each represent one stress component

(Ox, Oy, or Txy). The extrapolation scheme can be applied to the two-

dimensional case, which is presented in Ref. I00. This scheme will

contribute to improving accuracy of design sensitivity in the next

chapter.

4.3 Formulation of Constraints with Characteristic Functions

In design sensitivity analysis and optimization, stress constraints

are among the most important and difficult to deal with. It is not easy

to handle stress constraint as pointwise constraints. In this section,

an equivalent functional form of stress constraints with a

characteristic function [5] is presented.

Suppose one has pointwlse constraints

_8(x,u,z,b) <- 0 , 8 = 1,2, ..,q, x e (4.24)

These pointwise constraints can be replaced by the equivalent functional

constraints [101]

vs = fn(+s+ lVsl)dO= 0 , S= 1,2,...,q (4.25)
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so that one can reduce the difficulty of handling polntwise constraints

in numerical calculations.

One may get poor sensitivities of the constraints of Eq. 4.25

during design iterations, particularly when violations of constraints of

Eq. 4.24 are small and occur only in some local area of the domain, due

to smearing characteristics of the constraints of Eq. 4.25. This

phenomenon causes much difficulty when design iterations approach an

optimum design, for which violations of constraints are usually small

and occur only in some local area of the domain.

A characteristic function is introduced to cope with the problem,

with the idea that it can be used to reduce the smearing characteristics

described above. A characteristic function is a positive, constant

function, defined in a local region _ of fland is zero outside 9' with

the property

f_Mpd_ = l = ffi Mpd_ (4.26)

where Mp denotes the characteristic function defined in _. As the area

of _p approaches zero, Mp approaches the Dirac-6 distribution.

One can transform the constraints of Eq. 4.24 to integral form over

small test cells by weighting _8(x,z), 8 = l,-..,q, with a

characteristic function defined in that region,

YBk = f ¢_k d_ <- 0, 8 = l,...,q, k = 1,...,m (4.27)

where _k denotes the domain of test cell k and _ = _I u _ u "'" u _m"

With this formulation, one can isolate the areas in which violations
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occur and hence reduce the smearing characteristics significantly by

suitable choice of characteristic functions defined in the test cells.

The scheme is quite useful when one employs the finite element method

for analysis of the system. In that case, each element is treated as a

test cell and the characteristic function is approximated by a step

function that is defined inside the element and equal to zero outside

the element. The magnitudes of violations in the elements are weighted

properly and, therefore, give reasonable values of sensitivities.

4.4 Element Boundar_ Movement Effect for Shape Variation

In the continuous shape optimization method [72], the normal

boundary movement vTn is obtained as the result of an optimization

iteration. After each iteration, one can directly move the boundary by

the amount vTn to construct a new boundary. However, in the finite

dimensional shape optimization method, the velocity field V at the

boundary is represented by a design parameter vector b and its variation

5b. In this method, 5b is determined as the result of an optimization

iteration and, after the iteration, one generates a new design parameter

vector and constructs a new boundary. Considering that the domain of a

structural component consists of several finite elements, one may

presume that the boundary movement of the structural component causes

element boundary movement. This section introduces development of the

element boundary movement effect that will be tested and used in shape

design sensitivity analysis of built-up structures in later sections.

Let M(x) be a characteristic function on an open region _ic_ with

smooth boundary Pi such that f_ M(x)d_ = I, where M = I/f_id_ on _i and
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M = 0 on fl\_i" Then one has, on domain_i'

_(x) = llm
_0

1 I

(
= - lira I

f_i(z) d_ - felde

T

i )

= - _ frV Tndr

' TV '= M (x) + w(x) = M (x) (4.28)

since M is constant on fli"

Now consider the stress constraint

¢(o) < o
(4.29)

The functional form with the characteristic function M is

= fn_Md_ = f_i_Md_ < 0

Taking material derivative of Eq. 4.30, using Eq. 4.28, yields

' ' ' _bMVTnd r
d_ + frlMd_ + ffli

= fn+'Mdn - _frivTndrfei_ In + fri_MvTndr

(4.30)

(4.31)
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4.5 A Sparse Matrix Symbolic Factorlzatlon

Technique for Iteratlve Analysis

In built-up structure optimization, one must solve the state

equation of the system and adJolnt equations that have exactly the same

form, with different loads, repeatedly with the finite element method to

calculate design sensitivities in each design iteration. This procedure

is continued until one obtains an optimum design. In each design

iteration, one constructs the global stiffness matrix, factors the

matrix, saves the factors, and solves the equation wlth different load

vectors, using forward-backward substitutions.

Since factorlzatlon of the matrix takes a major portion of the

computation time, it is necessary to employ techniques to reduce this

factorlzatlon time in each design iteration or to generate and store

data that can be used in all design iterations and eliminate several

steps of factorlzatlon in each design iteration. For the former, the

bandwidth technique, the skyline technique, or various large matrix

handling techniques [102] are conveniently employed. For the latter, a

sparse matrix symbolic factorlzatlon technique [103] is highly

desirable, because it does not require selection of the best node

numbering sequence for minimum bandwidth of the global stiffness

matrix. When this technique is combined wlth an iterative optimization

algorithm, data generated by the symbolic factorizatlon process can be

used in all design iterations, which results in a substantial reduction

of factorlzatlon time, provided that one maintains the same pattern of

the global stiffness matrix during design iterations. This technique,

which is used extensively in numerical calculations for optimal design
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of built-up structure in Chapter 5, is briefly discussed in this

section.

Consider a structure that is partitioned into n finite elements and

a matrix equation for the entire structure, of the form

Kz - f (4.32)

where z is a vector of independent generalized displacements, obtained

by elimination of degrees of freedom specified by boundary conditions of

the structure, f is a corresponding vector of equivalent nodal forces,

and K is symmetric, positive definite, sparse structural stiffness

matrix that is to be constructdd from element stiffness matrices K i,

i = 1,2,3,.-.,n. If the local coordinate systems are parallel to the

global coordinate system, one has

K-_ cITKIc i (4.33)
i-I

where Ci are boolean matrices, each of which has only unit element per

row and the rotation matrices are presumed to be identity matrices. In

Eq. 4.33, one sees that a nonzero entry in K is equal to a sum of

nonzero entries in K i.

The sparse matrix symbolic factorization technique starts from a

preprocessing step to define pointer arrays that will be used in

structural analysis to construct the matrix K from K i, reorder the array

containing the nonzero entries in the lower triangular part of K, and

numerically factor a symmetric permutation of the matrix. Generation of

these pointer arrays is considered as a symbolic factorization, since it
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is equivalent to choosing a permutation matrix P and reordering the

matrix elements for storage by columns in L, where L is a lower

triangular matrix that is obtained from factorlzation of K to the form

LDL T, with D a diagonal matrix. It allows one to factor PKP T into LDL T,

given only the zero/nonzero pattern of the matrix K and not the

numerical values of the nonzero entries in K.

It is worth noting that, by virtue of the pointer arrays, one does

not have to select the best node numbering sequence for minimum

bandwidth of K. It is also worth noting that if the zero/nonzero

pattern of K is not changed during design iterations, only one

preprocesslng step is necessary and the pointer arrays can be used

repeatedly in every design iteration, which results in substantial

reduction in computation time _or the iterations.

After the preprocesslng step, one can supply numerical values of

the nonzero entries in K for numerical factorlzatlon. This is done,

upon generation of each Ki and elimination of degrees of freedom

specified by the boundary conditions of the structures, by supplylng

only nonzero entries in the lower triangular part of Ki. One then

performs a numerical factorlzatlon of the symmetric permutation of K

into the form LDL T. For a given load vector f, one can perform forward

and backward substitutions to calculate K-If. With the factored form of

K saved, one can continue solving equations with a different load

vector f.

The sparse matrix symbolic factorlzatlon technique explained above

can easily be adapted to iteratlve optimization algorithms, as shown in
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Fig. 4.11. The preprocessing step, which requires large storage, is

executed Just once as long as the pattern of K is not changed; i.e., as

long as the connectivity of the finite elements is preserved. For

optimization problems in which design changes affect only a few

elements, one can further save computation time and store space.

The method presented in this section has been succesfully applied

to optimal design of a built-up structure problem in Chapter 5. For the

preprocesslng step, numerical factorlzatlon, and forward and backward

substitutions, various subroutines of the Harwell Subroutine Library

[104] are called. For detailed information of the method and usage of

the subroutines, the reader is referred to Ref. 103.

4.6 Deslgn Sensitivity Analysis of a Beam-Truss

Built-Up Structure

Numerical results of design sensitivity analysis for the beam-truss

built-up structure of Fig. 3.1a is obtained, based on the analytical

formulas of design sensitivity analysis derived in Chapters 2 and 3 for

fixed or variable domain.

The finite element method, using cubic shape functions with an

extrapolation scheme for accurate evaluation of the third derivatives of

displacement function at the nodal points for uniformly distributed load

has been employed. Conventlonal and shape design sensitivity forms are

obtained separately. In shape design sensitivity calculations, it is

presumed that the conventional design u (widths and heights of the beam

elements) is suppressed and the outside boundaries are fixed; i.e., only

the position of the truss can move with velocity V. Simultaneous
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changes of conventional design and shape can be applied as a simple

combination of the two separate cases.

Consider a stress constraint functional defined in _a

ffi f oMd_ (4.34)
_a

where _ is bending stress, defined as

Eh
= ---z (4.35)

2 xx

and M is a characteristic function defined on each finite element

in _a.

One can treat Eq. 4.34 as the functional form of Eq. 2.63 and the

adjoint equation is, from Eq. 2.70,

Eh - Mda(_,_) = -f [- _xx

fla

for all _ e Z, where Z is the space of kinematically admissible

(4.36)

displacement fields. Equation 4.36 has a unique solution _, which is

the displacement due to load -(EhM/2)xx in the region where the

constraint functional is defined. That is, with smoothness assumptions,

the variational equation of Eq. 4.36 is equivalent to the formal

operator equation

-%

= , fla ((ElaAax)xx - (_-_ M)x x x •

(EIb b)= = o ,x ? J
(4.37)

where _ satisfies all the boundary and interface conditions of

Eqs. 3.23, 3.33 and 3.34 in Tables 3.1 and 3.3. Therefore, the
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conventional design sensitivity is, from Eq. 2.72,

' E a'
_c = - f _ z Md_ - ,h) (4.38)

_a xx 6u, _(z

where

a6u, f_(z'h) = -(Elaazaxx_axx,]dt]+ ( zbxx_bxx)df_
e e

(4.39)

where e = [d,h] T and d(h) is width (height) of the beam. The shape

design sensitivity is, from Eq. 3.89 with fa = fb,

!

_s = [Ela [za ha - za xa _ a aL " XX XX XXX X hxxxZx)

- Elb(z b hb _ zb Xb _ Xb zb)]vl
xx xx xxx x xxx x y

(4.40)

Considering the element boundary movement effect of Eq. 4.31, one

may write the shape design sensitivity of Eq. 4.40 as

, = [Ela(z a ha a ha _ a a_s xx xx - Zxxx x hxxxZx)

hb b hb xb zb)]Vl
-Elb(zbxx xx - Zxxx x - xxx x IY

Eh Eh I+ (M2 z - i'-z=M)ve
(4.41)

where V e is the velocity of the element boundary that is presumed to be

proportional to the velocity V of the component boundary, depending on

e denotes the boundary of the element where the
the position, and rM

characteristic function M is applied.
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Special attention is required for the case in which the element

F_ coincides with the interface y, where Eq. 4.41 needs to beboundary

modified.

Rewriting the adjoint equation of Eq. 4.36, one has

[_a Zh ia MaXl [ i Eli_i ii df =- _- xx
fffia,b fl xx xx

for all _ e Z. Integrating terms in Eq. 4.42 by parts yields

ira' b xx x

ffa(_.__ Eh M_a + ( )x x ]= _ Eh M)xx_adf + [_ _- x y

where ri is the outside boundary of the beam component i. With

smoothness assumptions, the variational equation of Eq. 4.42 is

equivalent to the formal operator equation.

(4.42)

(4.43)

x Eh fa ]
(zlax )xx = - (2---M)xx ' x

(ElbXbxx)xx = 0 , x e fib

zi = zi = xi = Xi = 0 , xe _,
X X

a b
Z ----Z

afzb
Zx x

_a= _b

_a= _b
x x

, xe y

i = a,b

(4.44)

(4.45)

(4.46)
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Eiaz a = Elbz b
XX XX

(EIazL)x - (EIbzbxx)x : EA
i

EIa_L - EIb_bxx : -_--MEh

(EialL)x _ (Elblbxx)x = _ _EA s _ (___EhM) x

x eV

(4.47)

(4.48)

Note that the conditions of Eqs. 4.45 to 4.47 are the same as those of

Eqs. 3.23, 3.33, and 3.34, respectively. In Eq. 4.48, another set of

jump conditions for the adjoint variables, which are different from

those of Eq 3.34, are obtained, due to coincidence of the element

boundary with the interface y. Then, with the element boundary movement

effect and coincidence of the element boundary with the interface y,

Eq. 3.10 becomes

I f i{zllt(z_i) hi + i (_i) }
ifa,b _ xx xx xx xx

Eh (zxava)xxM }d __ fi(_xiVl)+ :-

+ X (fill _ZllZ_x_)VlI-- t
i=a, b flu y

Eh z_M)Ve I (4.49)Eh a dfl _ __ -
+ (.2 faa T- z=

Integrating terms in the domain integral of Eq. 4.49 by parts, one has

+

_i[(Eii i i
i=a,b xx

i i Eh M)xx(zxava)]d_- fi(_xV ) + (-_
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_ (Elizlxx)x(%Ixvi)+ (fi%i, EllZlxx_ixx)vi]

+ _-Eh(zxaVa)x M _ (__EhM)x(Zax Va)

+ (M2fa _" z dR
(4.50)

From the formal operator equations of Eqs. 2.1 and 4.44, one

obtains the shape design sensitivity by imposing the interface

conditions of Eqs. 4.46 to 4.48, with fa __ fb, as

Ca'= [Ela(zaxx_axx - Zxxxa_a_x _L za)

_ Elb(z b %b _ zb _b _ xb zb)]vl
xx xx xxx x xxx x [y

Eh a yam + (l_2f a_ z da- Tz M)V e (4.51)
+ T- Zxx a xx re

Noting that the velocity Ve is the same as the velocity V a at the

interface y, one can obtain the final shape design sensitivity as

, = [Zla(z a _a _ a _a a a_a xx xx Zxxx x- _xxxZx)

_ Elb(z b _b _ zb xb _ _b zb)]vl
xx xx xxx x xxx x I Y

Eh a I Eh I
+ (M2f a _-- ZxxdR)Ve _M - (_'- z_MlVe _M \_ (4.521

Comparing Eq. 4.52 with Eq. 4.41, one notes that coincidence of the

element boundary with the interface y causes the last term of Eq. 4.41,

evaluated at the interface y, to be dropped. Similarly, one can apply

the above argument to the outside boundary r of the structural component

and obtain the same form as Eq. 4.52, by dropping the last term

evaluated at the outside boundary r.
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Numerical calculations of design sensitivities are carried out to

check the design sensitivity agreementsbetween actual changesof

constraint values (average stresses) and predictions.

The finite element model used is shown in Fig. 4.12. A total of II

finite elements and 20 degrees of freedom are used to model the beam-

truss built-up structure, including I0 beam elements and I truss

element. The I! finite elements are linked to two conventional design

variables (heights and widths of the beam elements) and one shape design

variable (supporting position of the truss).

The input data used in this calculation are as follows: elastic

modulus E = 3 x 107 psi, beam length £ = I00 in., uniform height (width)

of beam element h = 1 in. (d = 0.4 in.), cross-sectional area (length)

of truss element A = 5 in. (_ = 50 in.), the original position of the

supporting truss _ = 0.5£, and uniformly distributed load

f = 0.I Ib/in. on the beam.

Comparisons of design sensitivity calculations with the actual

changes of constraint values after design modifications and the

predictions for bending stress constraints of Eq. 4.34 are summarized in

Table 4.4 for fixed domain and in Table 4.5 for variable domain,

respectively. In Tables 4.4 and 4.5, ¥I represents the constraint

values at initial design, A_ represents the actual changes of constraint

values after design modifications, and _ represent design sensitivity

predictions. The last columns in Tables 4.4 and 4.5 denote the design

sensitivity agreements in % between actual changes and predictions,

defined as _/A_ x I00. In conventional design sensitivity comparison,
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Figure 4.12 Finite Element Model for Beam-Truss Built-Up Structure



121

Table 4.4 Conventional Design Sensitivity Comparison for

Truss-Beam Built-Up Structure

Element

no.

0.I156E 03

0.2469e 03

0.2281E 03

0.5940E 03

-0.2593E 03

A_

-0.1575E 02

-0.3362 E Q2

-0.3106E 02

-0.8083E 01

0.3532E 02

6_

-0.1734E 02

-0.3703E 02

-0.3422E 02

-0.8905E Ol

0.3891E 02

(%)

110.2

110.1

110.2

110.2

110.2

Table 4.5 Shape Design Sensitivity Comparison for Truss-Beam

Built-Up Structure

Element

no,

1

2

3

4

5

6

7

8

9

I0

0.I156E 03

0.2469E 03

0.2281E 03

0.5940E 03

_0.2593E 03

-0.2593E 03

0.5940E 03

0.2281E 03

0.2469E 03

0.1156E 03

A_

0.1630E 02

0.3866E 02

0.4565E 02

0.3726E 02

0.1349E 02

-O.1901E 02

-0.4024E 02

-0.4685E 02

-0.3884E 02

-0.1620E 02

_(_/A_)

O.1500E 02(92.0%)

0.3375E 02(87.3%)

0.3750E 02(82.1%)

0.2625E 02(70.5%)

0.2347E-05( ..... )

-0.2347E-05( ......)

-0.2625E 02(65.2%)

-0.3750E 02(80.0%)

-0.3375E 02(86.9%)

-O.1500E 02(92.6%)

_(_/A_)

0.1688E 02(103.5%)

0.3938E 02(101.8%)

0.4688E 02(102.7%)

0.3938E 02(105.7%)

0.1688E 02(125.1%)

-0.1688E 02( 88.8%)

-0.3938E 02( 97.8%)

-0.4688E 02(100.1%)

-0.3938E 02(101.4%)

-0.1688E 02(104.2%)
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results for only half of the entire elements, due to symmetry of the

structure, is tabulated in Table 4.4, with 5% uniform change of design

variables. Table 4.4 shows good agreement of about 110% between actual

changes and predictions for all elements. Table 4.5 shows the shape

design sensitivity comparison with 5% change of shape design variable

(position _). When the position _ moves with velocity V, it is assumed

that each finite element domain also moves with a velocity V i that is

proportional to V, depending on the position, and the element boundary

movement effect (Eq. 4.41) can apply. Particularly for calculating the

design sensitivities for stress constraints defined on elements 5 and 6

of which boundaries coincide with the interface, Eq. 4.52 is used. In

Table 4.5, the values in the column for _ shows the design

sensitivities by prediction without modification of third derivatives of

the state variable.

Sensitivity predictions obtained for _ in Table 4.5, using

Eq. 4.52, show reasonably good agreement with actual changes, except in

the 5th and 6th elements. However, using the extrapolation scheme for

calculation of third derivatives of state variables (for uniformly

distributed load) discussed in Section 4.2.1, one can obtain better

sensitivity agreement of 88-125% as shown for _¥ in Table 4.5.

These arguments and numerical tests provide the potential for design

sensitivity calculations of a truss-beam-plate built-up structure, which

is treated in Chapter 5.
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CHAPTER5

OPTIMAL DESIGN OF A TRUSS-BEAM-PLATE BUILT-UP STRUCTURE

5.1 Introduction

The design sensitivity analysis method developed in Chapters 2 and

3, with the aid of numerical methods discussed in Chapter 4, is used

with a nonlinear programming method to Iteratlvely optimize design of a

truss-beam-plate built-up structure. Minimum weight will be sought,

with constraints on compliance, displacement, stress, and natural

frequency and bounds on design variables.

The variational formulation of system equations is presented in

Section 5.2. The optimal design problem is formulated in Section 5.3

with the cost and constraint functionals defined. In Section 5.4,

design sensitivity coefficients of the cost and constraint functionals

for compliance, displacement, stress, and eigenvalue are obtained, using

results from Chapters 2 and 3. The optimal design problem is solved

using the llnearlzatlon method of optimization [105]. Numerical results

are presented and discussed in Section 5.5.

5.2 Description of System and Variational Formulation

A beam-plate built-up structure is supported by four 4-bar trusses,

as shown in Fig. 5.1. A uniformly distributed load is applied to the

plate components. The points supported by the trusses are at the

intersections of two crossing beams nearest to the free edges of the

structure. It is assumed that no external loads act on the beam and
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truss componentsand no external torques act on the beam. The plates

and beamsare assumedto be welded together. No dissipation of energy

between plate and beamcomponentsis presumedto occur during bending

and torsion. The derivation of state equations for the plate and beam

is based on classical small-deflection theory [106].

Dimensions of the structure and the numbering and spacing of beams

in both directions are shown in Fig. 5.1. Coordinates of intersection

points of beams and plates are supposed to be in the mld-planes of the

plates and neutral axes of the beams. The coordinates of intersection

points are then

x i = xi_ 1 + a i ,

YJ = YJ-I + bj ,

Xo = YO = 0

i = t,...,n (5.1)

J = l,...,m (5.2)

(5.3)

Xn+ 1 = L = L (5.4)x , Ym+l y

where n(m) is the number of transverse (longitudinal) beams, ai(b j) is

the distance from the (i-l)th to the ith transverse beam (from the

(j-l)th to the jth longitudinal beam), and Lx(Ly) is the dimension of

the entire structure in the x(y)-dlrectlon.

Suppose applied loads are given as

fiJ e L2(G ij) , i -- l,...,n+1, j -- l,...,m+l (5.5)

where fiJ is defined as a uniformly distributed load on the plate and
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_J = (xi_l,xl) x (Yj_l,Yj) , i = l,...,n+l, j = l,...,m+l (5.6)

_2lj= (Xi_l,Xi), yj , i = l,...,n+l, j = l,...,m (5.7)

_iJ= xi' (Yj_l,Yj) , i = l,...,n, J -- I,...,m+1 (5.8)

are domains of plates, longitudinal beams, and transverse beams,

respectively. Define F_j as _he boundary of _J, k=1,2,3. Then, _J

and _J are regarded as parts of P_J. The superscripts i and j used in

Eqs. 5.5 to 5.8 can be applied to the design variables and state

variables to identify those values in each component.

The design variables for this built-up structure are the thickness

tiJ(x,y) of each plate component, the width _J(x) and height

_iJ(x) of each longitudinal beam component, the width _ij(y) and

height _iJ(y) of each transverse beam component, the constant cross-

sectional areas _J(i=l and n, j=l and m, k=l-4) of the 4-bar truss

members, the positions _i(i=l,...,n) of transverse beams, and the

positions _J(j=l,...,m) of longitudinal beams. In vector form, this is

u--(t ij _ij _iJ _ij _ij J x _J) L'(_ j) × L_(_ j)
, , ' ' ' ' ,

x L'(_ j) x L'(_3J ) x L'(_ j) x (R4) 4 x Rn x Rm (5.9)

It is presumed that the lengths of trusses are fixed, but that they may

change their ground positions and that the outside boundary of the

entire structure is fixed; i.e., only the locations of beams are

variable.
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The state variables for this built-up structure consist of the

displacement function w ij of each plate component, the displacement

function _lj and the rotation _J of each longitudinal beam component,

the displacement function _iJ and the rotation e_lj of each transverse

lj
beam component, and 12 nodal displacement coordinates qk (i=l and n,

j=l and m, and k=l-3) of truss members.

In vector form, the state variables are thus

z (wlj, lj,o j, lj, lj,q J) (510)

Kinematic boundary and interface conditions are prerequisite for

use of the principle of minimum total potential energy or the principle

of virtual work and for design sensitivity calculations, since the

displacement fields must satisfy kinematic boundary and interface

conditions.

Consider first the kinematic boundary conditions at the interfaces,

since there are no kinematic boundary conditions at the free edges. At

the interfaces between plate components, the lateral deflections of the

plate and beam components are the same. For longitudinal beams,

_lJ wlj = wl,J+l= , i = l,...,n+1, j = l,...,m (5.11)

and for transverse beams,

_lj : wlj = wi+l,j , i = l,...,n , J = I,...,m+1 (5.12)

The normal slopes of plate components are the same as the torsion

angles of beam components that are attached at the interfaces of open
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intervals. For plates and longitudinal beams,

_iJ = wiJ = wi,J+l , i = 1,...,n+l, j = 1,...,m (5.13)
Y Y

and for plates and transverse beams,

w i i+l ,JlJ = J = w , i = l,...,n, j = 1,...,m+I (5.14)
X X

The torsion angles of transverse beams and axial slopes of

longitudinal beams must be the same at intersection of two beams; i.e.,

_iJ = _iJ = _i+l,J i = l,...,n, J = I,, • ••,m (5 15)

Similarly, the torsion angles of longitudinal beams and axial slopes of

transverse beams must be the same at intersection of two beams; i.e.,

_iJ = _lj = _i,J+l , i = 1,...,n, J = l,...,m (5.16)

It is assumed that each lateral displacement is evaluated at the

middle plane of each plate and the neutral axis of each beam. Then, the

lateral deflections of two crossing beams and trusses must be the same

at the intersection points; i.e.,

~i+l ,J 1

v lj v

vij = vi'j+l i = l,...n, j = l,...,m (5.17)

= v lj = q_J , i = 1 and n, J = I and m (5.18)
J
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With the assumption that there are no in-plane (axial) deformations

in the plates (beams), the plates and beams resting on the four 4-bar

trusses are presumed to move as a rigid body in the plane of the

plates. Referring to Fig. 5.2, one can obtain relationships between

horizontal displacements. Defining the position of point 1 in Fig. 5.2,

II II

after deformation, as [(xl+ql ), (y1+q2)] and the rotation angle as m,

the coordinates of positions of points 2, 3, and 4 in Fig. 5.2 can be

identified as follows:

For point 2,

nl111 - Xl)COSm = x + qlXl + q l + (Xn n

Ii nl
Yl + q2 + (Xn - Xl)Slnm = Yl + q2

(5.!9)

For point 3,

II Im 1

Xl + ql - (Ym - Yl )sin_ = Xl + ql

Yl + q_l + (Ym Yl)C°S_ = Ym + q_m

(5.20)

For point 4,

n1Xl + qlIl + (Xn - Xl)C°Sm- (Ym - Yl )sinw = Xn + ql

Yl + q_1 + (x n _ Xl)sin m + (Ym Yl )c°sw Ym + q7

(5.21)

Assuming that the rotation angle m is small, sin_ _ m and

cosm - I. With this approximation, the system of equations of Eqs. 5.19

to 5.21 yields the following relationships among the unknown parameters

II 11 nm

ql ' q2 ' and ql :
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Figure 5.2 Horizontal Displacement of a Truss-Beam-Plate

Built-Up Structure
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nl 1I
ql = ql

nl 11 lm 11
q2 = q2 + (Xn - Xl)(ql - ql )/(Ym - Yl )

lm 11
q2 = q2

nm 11 lm
ql = 2ql - ql

nm 11 nm 11
q2 = q2 + (Xn - Xl)(ql - ql )/(Ym - Yl )

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

One may now define the set Z of klnematically admissible

displacement fields as follows:

im nm 02 _JZ = {z = (wiJ, vtJ, _tJ, vtJ, _iJ, q_l, qk I' qk ' qk ) e H ( )

2 _J HI(_J R3 R3 R3x .2(_j)x a_(_J)x %( )x )x x R3x x

such that all the boundary conditions of Eqs. 5.11 to 5.26

are satisfied} (5.27)

Now consider the natural boundary conditions at the free edges and

interfaces of plate components. At the four free edges, the bending

moments and vertical edge forces are zero. For the plate components, at

the free edges,

MiJx= 0 1vlj = 0
x

i = 0 and n+l, J = l,...,m+l (5.28)
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1v lj - o
Y

i = 1,...,n+l, J = 0 and m+l (5.29)

where Mx, Vx, My, and Vy are defined in Table 3.2.

For the beam components at the free edges,

}_lj = o
X

i ffi 0 and n+l, j = 1,...,m (5.30)

_ljy = 0 1_ij = o
Y

i ffil,...,n, j = 0 and m+l (5.31)

where %, _x, %, and Vy are deflned in Table 3.2.

At the interface of open intervals between plate components, the

difference of effective shear forces [106,107] between adjacent plate

components acts as the load on the beam component attached, while the

difference of bendi_ moments between adjacent plate components acts as

the twisting moment on the beam component attached. For transverse

beams,

i = l,...,n, j = l,...,m+l (5.32)

Similarly, for longitudinal beams,

MiJy - Mi'J+ly = "GJv'_Jxxy 1
vylJ_ Vyl,j+1 = -(zlv'_J)x_

i ffi l,...,n+l, J = l,...,m (5.33)
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where G is shear modulus and _(j) Is the torsion constant of longi-

tudinal (transverse) beam component.

At intersection points of crossing beams, relationships between

corner forces of plate components and shear forces of beam components

are

2MiJ-2Mi+I'J-2Mi'J+I+2MI+I'J+I+v_I'J-v_I+I'J+v_I'J-v _i'j+l= 0
xy xy xy xy x x y y

(5.34)

where Mxy is defined in Table 3.2.

The variational equation of Eq. 2.39, for static response, becomes

n+l m+l

a n(z,z)= [ _ ffn_u, j
i=1 j=l

+(l-v)(2wlJw ij _ wiJwiJ _ wiJwiJ)]d_ 1
xy xy xx yy yy xx

+

n+l m

I Y. f
i=l j=l _J

xy xy z

+
n m+l

i=l J=l
fnlj-- (EIvlJvijyy yy + GJvlJviJ)dP_xyxy ._

IIT - II -II ImTK(Alm)-im nl T - nl.-nl
+ qk K(A£ )qk + qk £ qk + qk K(A£ }qk

T
..,. nmx -nm

+ qk m _,tA£ )qk

n+l m+l

Y. I
i=1 j=l

ff lj fiJwiJd_l = £ _(z)

_I u,

(5.35)

Similarly, the variational eigenvalue equation of Eq. 2.45 becomes [I08]
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n+l m+l
a a(y,y) = _[ I I
u, i=1 jffilff_j ptlJyij yij d _I

+

n+l m - -

+

n m+l

l I fij
ill jfl P.3

11 11-11 nl nl nl-nl
+ °(Alil_i Yk Yk + Ai £g Yk Yk

im Im im -ira nm nm nm -nm _(y,y)+ A£ _£ Yk Yk + A_ _ Yk Yk )] ffi_du,

(5.36)

5.3 Formulation of the Optimal Design Problem

Minimum weight design of this truss-beam-plate built-up structure,

subject to constraints that arise in most structures, is considered.

Volume of the built-up structdre is the cost functional to be minimized,

n+l m+l n+l m

¥Offi _: _" ff_J tiJd_l1 + _: _ f'J _lJ h_lJ d fl2i=l j=l iffil j=l

n m+1 16

+ 7 7. f jdiJhiJd_ 3 + _ Ai£ i
i=l j=l g iffil

(5.37)

where Ai(£ i) is the cross-sectlonal area (length) of the ith truss

member.

The design problem is to find the optimum distribution of design

variables to minimize ¥0' subject to the following constraints:

Compliance Constraintl

n+l m+l

¥I= i=l_ j=l_ S£_j fiJwiJd_- FWa < 0

(5.38)

where FW a is the maximum allowable value.
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Displacement Constraint_

*2 = ff j 6(x-x)w - za < 0 (5.39)°I
^ i A

where x _ _i0j0 is a fixed point, g(x) is the dirac measure in the plane

acting at the origin, and za is the maximum allowable value.

Stress Constraint on Plate Elements_

The maximum stress for a thin plate occurs on the surface of the

plate and is given in the form [107]

Et

Oxx = 2(i_v2 ) (Wxx + _Wyy)

= Et (Wyy + _xx )2(i_2)

Et
T = - _W
xy I+_ xy

The Von-Mises failure criterion is [107]

(5.40)

(a2 o2 3T2
IL

- + +
xx yy xy °xx YY

(5.41)

One may transform the above pointwise constraint to integral form over

plate finite elements, by weighting the stress field with a

characteristic function. The averaged constraint on _(o) in this small

region is

¥3 = f] ioJo#(°)Mp d_- °ap-< 0 (5.42)
n

1

where Mp is a characteristic function that is defined on each plate

element of _ OjO_ and is zero outside that plate element and a is a
P

given allowable yield stress.
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Stress Constraint on Beam Elements_

The bending stress functional over beam finite elements is obtained

by weighting the stress field with a characteristic function defined in

that region as

¥4 : f ObMbdi } - a
i0J 0 ob <_0 (5.43)

2

where M b is a characteristic function that is defined on each beam

e_eoe._o__0_0_ _ z_roou_s_e_ _e__e_ o__,_ _ven

allowable stress on the beam element, and ob is the bending stress,

defined as

---v (5.44)
°b = 2 xx

Similarly, stress constraints on transverse beam elements can be defined

as in Eq. 5.43.

Eigenvalue Constraintl

The natural frequency bound must be met by the structure,

v5 : Co - _ <-o

2
where _ =

bound.

Design Variable Bounds_

£< ti< utI tI

£<dj < udj dj

(5.45)

is the computed smallest eigenvalue and _ is the lower

, i ffiI,...,NE (5.46)

, J : I,...,NB (5.47)

, k = I,...,NB (5.48)
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A£ < A < A u n -- I, ,NT (5.49)
n n n ' "'"

J_ u

x i < xi < xi , i = l,...,n (5_50)

u

yj < yj < yj , j = l,...,m (5.51)

where NE is the number of plate elements, NB is the number of beam

elements, NT is the number of trusses, n(m) is the number of transverse

(longitudinal) beams, the superscript £ denotes lower bound, and the

superscript u denotes upper bound.

5.4 Design Sensitivity Analysis

Design sensitivity analysis results of Chapter 2 and the shape

desi_l sensitivity technique of Chapter 3 are employed directly to

obtain design sensi_ivlty forms, with both design and shape variations,

for the present model. Design derivatives of cost and constraint

functlonals considered in Section 5.3 are obtained. As discussed in the

preceding chapters, the procedure for obtaining static design

sensitivity, using the adjolnt variable method, is identical with ouly a

different adJoint load functional that depends on constraints. For the

compliance and eigenvalue constraints, it is not required to introduce

an adJoint variable.

The design derivative of the cost functional of Eq. 5.37 is

calculated directly as
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Y0 =
n+l m+l
I I
i=1 j=l

n+l m

i--Ij--l_J

+

n m+l

I F f
i--1 j--I _J

(_lj_lj + gij _iJ)da3
16

+ _ £i 6Ai
i=l

+

n m+l

I Y
i=l j--I

ij tiJ (vijTniJ)d rI n+1 "mf + I I f
rt i--I j=l r_ j

_Jh _4j (vijTn ij )d r2

n m+l (vijTniJ

+i=l[ jffil[ fr3ij _iJ_iJ )dr3 (5.52)

Consider first the design derivatives of the displacement

constraint of Eq. 5.o9. Since o_-_} _n .q. 5.J_n i_....defined ....

_i0J 0 ^ ^,

neighborhood of _I by zero extension and x is fixed, 6 (x-x) = O.

Thus, one can treat Eq. 5.39 as the functional form of Eq. 2.63 and the

adjoint equation is, from Eq. 2.70,

a(_,A) = ff 6(x-x)_d_ (5.53)

nil 0 J 0

for all _ e Z. Equation 5.53 has a unique solution _, which is the

^

displacement due to a unit load at x. That is, with smoothness

assumptions, the variational equation of Eq. 5.53 is equivalent to the

formal operator equation

i°J° 1

Di0J0v 4 w-i0Jo = 6(x-x) , x eR I

-i0J0 i=l, ..,n+l j=l,. ,m+lD ijV4w lj = 0 , x e R J\_lI , . , ..

(5.54)

where I satisfies the boundary and interface conditions of Eqs. 5.11 to

5.34.
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Once the adJolnt variable is obtained by solving Eq. 5.54, one is

in a position to evaluate the final design sensltlvlty forms of Eq. 2.72

for thls displacement constraint as a combination of conventional and

shape design sensitivities. The conventional design sensltlvlty, the

flrst bracket of Eq. 2.72, ls simply the expllclt design derivatives of

the constraint functional, load functional, and the varlatlonal equation

of Eq. 5.35. For the shape design sensitivity, the second bracket of

Eq. 2.72, a unified method for shape design sensitivity analysis can be

employed as in Chapter 3 to obtaln the flnal shape design sensitivity

forms. Since the constraint and load functlonals are independent of

design variables, the flnal design sensitivities can be written as

! !

¥2 = - a6u,f](z' _)

+

+

+

n+lm+ll=l[ j=lY _ilj A_J (z,)0vljTnlJdr

where

n+l m _)vljTn ljdr

i=i j=1 J

n m+l

y.Ir ji=i j=I

, n+l m+l

Z Zi=i j=i J DtijiJ [(wiJ + wiJ)(wtjyyxx + w_)

+ (l-_)(2wlJw lj - wiJwiJ _ wiJwiJ)]dfl 1
xy xy xx yy yy xx

(s.ss)
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+

n+l m - -

i--Ij--1 _J _j xx xx _j xy xy
z

n m+1

+ _ _ f (E_i!.viJ$il + $i) vlJviJ)d% (5.56)
i--I j--I 3j b12 yy yy biJ xy xy

^ ^^

= [d,_l, b = [d,h], and

jAl(Z,_) = D{w - w wxx YY YY - (Wxxx + _xyy)Wx- (Wxx x + _xyy)Wx}

at x = xi, i = I - n (5.57)

_yy_
m

^I (z,X) = D{ YY w w - (wxx xx yyy + _Wxxy)Wy- (Wyyy + W,_xxy)Wy }

at y = yj, j = 1 - m
(5.58)

A2(z,_) = F.iv vx xx - L-   rV=)xV÷ v
xy xy

at x = xi, i = 1 - n (5.59)

A^ ^

A3(z,l) =Elv v -YY YY ..... yy)y"yV "" "(glvyy) yV - (Ely + GJv vy xy xy

at y = yj , j = 1 - m
(5.60)

For the design derivatives of the compliance constraint of

Eq. 5.38, one notes that the integral of Eq. 5.38 depends on the load

fij. However, since fij' = 0, one can treat Eq. 5.38 as the functional

form of Eq. 2.63. Therefore, the adjoint equation is, from Eq. 2.70,

n+l m+l

a(l,_)- _ _ ;;_ fiJw d_ (5.61)

i--1 J=l f_lJ
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for all _ e Z. The load functional on the right of Eq. 5.61 is

precisely the same as the load functional for the original problem of

Eq. 5.35. In this special case % = z, so from Eq. 2.72 one obtains the

same design sensitivity form of Eq. 5.55, with the adJoint variable

replaced by state variable z; i.e.,

, , n+l ,.+1 (z, z)vljTnlJ d

,,-- a_.,,,_.,.)+_--,YJ--'Y_'_j,_J r

+
n+l m

,z)vljTnlJ n m+l fr3 _ z)vljTnlJ
^i_(, dr+y y J(. drI I f lj lj

i=I j=1 r2 i=I j=l
(5.62)

where the terms in Eq. 5.62 are defined in Eqs. 5.56 to 5.60.

Consider next the stress constraint on a plate element of Eq. 5.42,

treated as the functional form of Eq. 2.63 that depends on the second

derivatives of the displacement functions. The adjolnt equation is,

from Eq. 2.70,

I
w

2I(o2+_+ 3_-o o )
a(_,_) = If i0J0 g xx yy xy xx yy

gt_ Eto

{ = (_= + _yy) _.___.zz = + _ )(1 - 0 2 (1_2) (Wyy

6Etz Et_

xy _ + xx (_yy + _xx)
(l+v) xy 2(1_2)

Eto

+ YY (_xx + '7,_yy)} M d_ (5.63)
2(lwv 2) P

for all _ e Z. With smoothness assumptions, the variational equation of

Eq. 5.63 is equivalent to the formal operator equation
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2

- Oxxayy)
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Eto

xx (Mpx x + _M ) -
(I - v2) Pyy

Eto

YY (Mpyy + uM )(1 - `o2) Pxx

6EtT Eta
xy xx

(l+`o) M +
Pxy 2(l-v 2)

(M + _M )+

Pyy Pxx

Eto

YY (M + _M

2(l-v 2 ) Pxx Pyy)_

D ij V4w ij = 0 x_ _J\_ °j°,

ioJo
x_ fll '

i = l,...,n+l, J = l,...,m+l

(5.64)

where _ satisfies the boundary and interface conditions of Eqs. 5.11 to

5.34. By solving Eq. 5.64, one evaluates the final design sensitivity

forms of Eq. 2.72 as in the displacement constraint with the same

arguments discussed there. However, since the constraint functional in

this case depends on the design variable explicitly, its design

derivative is added to the conventional design sensitivity form of

Eq. 5.55. Then, the final design sensitivity form is written, including

the element boundary movement effect of Eq. 4.31, as

I
--- Eo

T3' = f] I__2( a2xx + o2 + 3T 2 - axx_yy ) 2 [_ xx (Wxx +

ail0J0 yy xy (I-}) _Wyy)

Eo 6Ez

yv (Wyy + _xx ) - _ w
(l-`o 2) (l+`o) xy

+
Eo

xx

2(i_2)(Wyy + _x)

+
Eo

2(l_,o2)YY (Wxx + V,_yy)]Mpd_ - a6u,_
(z,X)
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n+l m+1

+ fr,ji=i j=1
^_J (z, _)vljTniJdr

n+l m

+ Y. _ f
i=l j=1 r2lj

_J (z,X)vljTnlJdr

+

n m+l

I I
i=t j=1 fr3 j _ j (z, h)vijTnijdr

_ M2 f 2 2 2"Tndrf ioJo(O x+ + 3,P _i0J0V yy xy

rM _1

1

- vMT
+ f ioJo(_2xx + °2yy + 3T2xy - _xxyyz )2Mp ndr

1"H

(5.65)

where the terms in Eq. 5.65 are defined in Eqs. 5.56 to 5.60, rM i0j0

v M denote the element boundary and its velocity, respectively.

and

Similarly, for stress constraints on longitudinal beam elements of

_f i0J Eh % Mbd_ (5.66)a(_,X) = T- Vxx

f12 0

for all _ e Z. This is equivalent to the formal operator equation, with

smoothness assumptions,

Dijy4wiJ = O, x e fl_J , i = l,...,n+l, j = l,...,m+l (5.67)

where % satisfies the boundary and interface conditions of Eqs. 5.11 to

ioJ 0 10J 0
5.34 except at the interface rI (precisely _ ). At the

ioJ o

interface _2 , different jump condition caused by the line load of

Eq. 5.66 is made as

- - cEh Mb)xx _0 j0viOJo viOJo+l=- (E_xx)xx " 2 , x e
Y Y

(5.68)
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With the adjoint variable obtained by solving Eq. 5.67, one can

write the final design sensitivity form of Eq. 2.72, with design

derivatives of the constraint functional for conventional design

sensitivity as in the case of stress constraint on a plate element, as

v E " v

¥4 = - f _ VxxMbd_- ,_(z I) +

_0J0 a6u ,

+ _n+1 m_ f J_J(z'l)vijTniJdr +

i=l J=1 r2

n+l m+l

I I
i=i j=1

n .i+I

i=l j=1

fr_j_J(z, l)vijTn ijdr

fr_j_J (z, l)vljTnljdr
(5.69)

where the terms in Eq. 5.69 are defined in Eqs. 5.56 to 5.60.

Finally, for the eigenvalue constraint of Eq. 5.45, the design

derivatives of a simple eigenvalue, given by Eq. 2.78 are obtained. The

conventional design sensitivity, the first bracket of Eq. 2.78, is the

explicit design derivative of the variational eigenvalue equation of

Eq. 5.36 and the shape design sensitivity, the second bracket of

Eq. 2.78, can be obtained by using the unified method for shape design

sensitivity analysis as in static response case and by imposing the

boundary/Interface conditions defined in Eqs. 5.ll through 5.34. Then,

the final eigenvalue design sensitivities can be written, using the

notion s instead of y for the elgenfunction in this section to avoid the

confusion, as

! !

= a6u,_(s,s) - _d6u,_(s,s) +
n+l m+l s)vijTniJ d

y.fr, ri=l j=l

+ n+l m s)vljTnlJdr
X fr _J(s,

i=I j=l iJ

+ n m+l s)vijTnlJd
I I Ir  ICs, r

i=1 J=1 _J
(5.70)
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V

where a_u,_ (s,s) is defined in Eq. 5.56 and

, n+l _-1 OslJ 2d_ 1
d6u,_(s's) = _' _' ff_i 1i=1 j=l J

m .2

n+l _ij _ij2 __ij s_ 3_ _ f [0(_Jff lj ) + ]d R

+

n m+l

_' _' f ij
i=l j=l _3

[p(_lj_ij)_ijsij2 + ?lj sij2]d_3- lj x
(5.71)

AI (s,s) = D{-s 2 + s2
xx yy

2

+ 2(Sxx x + _Sxyy)Sx} - _pts

at x = x i , i = l-n (5.72)

AI(S,s) = D{-S_y + s2 + 2(Sxx yyy

2

+ VSxxy)Syl - _pts

at y = _j , j = l-m (5.73)

h

A2(s,s) -- 2(E_Sxx)xL - E_s 2 - GJs""2
xx xy

_ +
Y

at x = x i, i = l-n (5.74)

^^2
A3(s,s) = 2(EiSyy)yS - Eis 2 - GJsy yy xy - _(Ddhs 2 + Is2x)

at y = _j , j = l-m

The calculation of derivatives of design variable bounds of

Eqs. 5.46 to 5.51 is trivial.

(5.75)
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5.5 Numerical Results and Discusslon

Numerical calculation of design sensitivities for the constraints

presented in Sections 5.3 and 5.4 for the present model is carried out

using the finite element method. A finite dimensional optimization

method [101] is employed _or the present problem, to match the accuracy

of the finite element analysis. Numerical considerations discussed in

Chapter 4 are applied to solve this problem.

For structural analysis of this built-up structure, in the first

stage, the stiffness and mass matrices of the plate are constructed by

the non-conforming method discussed in Section 4.2.2. The explicit

forms of stiffness and mass matrices have been published in many papers

such as Refs. 62 and 73. In the present problem, isotropic plates with

Hook's law in the standard form [73] are considered. Ill the second

stage, the stiffness and mass matrices of longitudinal and transverse

beams with respect to torsion and flexure rigidity are obtained [62] by

transformation from local to global coordinate systems. In the final

stage, the stiffness and mass matrices of truss members are obtained

[62]. The three stages are then assembled to form the global stlffLtess

and mass matrices for this problem, imposing interface conditions.

Similarly, global load vectors are assembled from element load vectors

of each structural component [73].

To solve the static and eigenvalue equations, the symbolic factor.-

izatlon technique presented in Section 4.5 is used to take advantage of

sparsity of the global stiffness and mass matrices of the built-up

structure. The subspace iteration method [102] is employed for solvi:_g

the elgenvalue problem.
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Structural analysis results are checked by using the finite element

program SPARand show good agreementsup to 3 significant digits.

Conventional design sensitivity and shape design sensitivity

calculations are carried out separately, with different finite element

models. The finite element model used for conventional design

sensitivity calculation is shownin Fig. 5.3. A total of 196 finite

elements and 363 degrees of freedom are used to model the truss-beam-

plate built-up structure, including I00 rectangular plate elements,

80 beamelements, and 16 truss elements. The 196 finite elements are

linked to 6 kinds of independent design variables (thlckness of plate

elements, height and width of longitudinal beamelements, height and

width of transverse beamelements, and cross-sectlonal area of truss

members).

The input data used are as follows: elastic modulus E = 3 × 107

psi, Poisson's ratio _ = 0.3, the overall dimension Lx × Ly = 15 in.

× 15 in., uniform thickness of plate element t = 0.I in., uniform

height (width) of beamelement h = 0.5 in. (d = 0.15 in.), cross-

sectional area (length) of truss element A = 0.I in. (L = 5.364 in.),

equal spacing of beamsLb = 3 in., and uniformly distributed load

f = 0.I Ib/in. 2 on the plate. Massdensity for the entire structure

is taken as p = 0.I ib/in. 3 for the eigenvalue problem.

Comparisonof conventional design sensitivities with actual changes

after design modifications and predictions for constraints considered in

Section 5.3 are summarizedin Table 5.1. A 5%uniform change of all

design variables with fixed cross-sectional areas and lengths of truss
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Table 5.1 Conventional Design Sensitivity Comparison for

Truss-Beam-Plate Built-Up Structure

Constraint

Displace- C

_nt

Stress

on

plate

element

Stress

On

beam

element

Elgen-

value

I

2

3

4

5

II

12

13

14

15

21

22

23

24

25

31

32

33

34

35

41

42

43

44

45

I

2

3

4

5

II

12

13

14

15

(%)

0.4775E-03 -0.8052E-04 -0.9071E-04 112.7

0.1484E 02

0.5829E 02

0.5263E 02

0.5256E 02

0.8497E 02

0.5829E 02

0.6780E O2

0.5827E 02

0.5269E 02

0.7658E 02

0.5263E 02

O.5827E 02

0.5450E 02

0.5850E 02

0.6155E 02

0.5256E 02

0.5269E 02

0.5850E 02

0.4697E 02

0,4621E 02

0.8497E 02

0.7658E 02

0.6155E 02

0.4621E 02

0.3975E 02

0.2956E 02

0.185OE 03

O.1200E 03

0.2041E 03

0.3549E 03

0.1656E 02

0.6312E 02

0.2192E 02

0.7964E 02

0.1454E 03

0.1242E 04

-0,7100E O0

-0.5980E 01

-0.5220E Ol

-0.5760E 01

-0.I028E 02

-0.5980E Ol

-0.7870E Ol

-0.6720E 01

-0.6240E Ol

-0.9360E 01

-0.5220E Ol

-0.6720E Ol

-0.6690E 01

-0.6990E 01

-0.7740E 01

-0.5760E 01

-0.6240E 01

-0.699OE 01

-0.6030E 01

-0.5880E 01

-0.I028E 02

-0.9360E 01

-0.7740E Ol

-0.5880E Ol

-0.525OE 01

-0.364OE Ol

-0.2428E 02

-0.1608E 02

-0.2552E 02

-0.4444E 02

-0.2360E 01

-0.7920E Ol

-0.2400E 01

-0.I088E 02

-0.1960E 02

0.2408E 03

-0.6750E 00 95.1

-0.6780E Ol 113.4

-0.5810E 01 111.3

-0.6320E 01 109.7

-0.I126E 02 109.5

-0.6780E Ol 113.4

-0.8630E 01 109.7

-0.7580E Ol 112.8

-0.6830E 01 109.5

-0. I034E 02 110.5

-0.5810E 01 111.3

-0.7580E 01 112.8

-0.7300E Ol 109.1

-0.8060E 01 115.3

-0.8500E 01 109.8

-0.6320E Ol 109.7

-0.6830E Ol 109.5

-0.8060E 01 115.3

-0.6340E Ol IO5.1

-0.6770E 01 I15.1

-0.I126E 02 109.5

-0.I034E 02 110.5

-0.8500E Ol 109.8

-0.6770E Ol 115.1

-0.5980E Ol 113.9

-0.3960E Ol 108.8

-0.2672E 02 IIO.0

-0.1764E 02 109.7

-0.2792E 02 109.4

-0.4872E 02 109.6

-0.2520E Ol 106.8

-0.8680E Ol 109.6

-0.2640E 01 llO.O

-0.1192E 02 109.6

-0.2140E 02 109.2

0.2199E 03 91.3
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members is used. In Table 5.1, 71 represents the constraint value at

initial design, AT represents the actual change of constraint value

after design modification, and 67 represents the sensitivity

prediction. The last column in Table 5.1 denotes the sensitivity

agreement in % between actual change and prediction, defined as

6¥/A¥ x I00. This definition is also used to Table 5.2. Results in

Table 5.1 show the conventional design sensitivity comparison for one

quarter of the structure, due to symmetry (Fig. 5.3), and show good

agreements of 91-115% for all constraints considered between sensitivity

predictions and constraint reevaluations after design modifications.

The accuracy is is more than adequate for iterative design.

During numerical calculation, it has been shown that the finite

element model of Fig. 5.3, which was used for conventional design

sensitivity calculation is not suitable for shape design sensitivity

calculation because of the coarse grid. The reason the finer grid for

shape design sensitivity calculations is required is that the shape

design sensitivity forms are defined as an integration over component

boundaries, while conventional design sensitivity forms are defined as

an integration over their domains. Sensitivity evaluation at the

component boundary is a major source of numerical inaccuracy, stemming

from finite element analysis in shape optimization of built-up

structures.

A finer grid finite element model for shape design sensitivity

calculation is shown in Fig. 5.4. 0nly one quarter of the entire

structure is shown in Fig. 5.4, due to symmetry. A total of 484 finite
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elements and 1281 degrees of freedom are used to model the structure,

including 400 rectangular plate elements, 80 beam elements and 4 truss

elements. Since conventional design variables are suppressed, the

design, variables for shape variation are the positions x , i=1,2, of

transverse beams and the positions y'J, J=l,2, of longitudinal beams.

During shape variations, it is presumed that the outside boundary is

fixed and the lengths of truss members are constant, that is, the ground

support of the truss moves according to the change of the beam

position. The same input data that are used in conventional design

sensitivity calculation are employed.

Comparison of shape design sensitivities with actual changes after

desi@l modification and predictions by formulas for constraints

considered in Section 5.3 are summarized in Table 5.2, with 5 % change

in position of each side of the plate components. Due to symmetry of

the finite element model (Fig. 5.4), design sensitivity comparison for

stress constraints of all beam elements and every other plate element i_

the upper triangular part, in addition to other constraints considered

in Section 5.3, is listed in Table 5.2. As in the truss-beam built-up

structure of Section 4.6, it is considered that the component boundary

movement affects the element boundary movement with a distributed

velocity, depending on the position, which is proportional to the

velocity of the component boundary, to treat the stress constraint that

is defined on the plate or beam element. Element boundary movement

effect in Section 4.4 for sensitivity calculation is applied, in which

the effect is shown to be critical in the present problem. As discussed
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Table 5.2 Shape Design Sensitivity Comparison for

Truss-Beam-Plate Built-Up Structure

Constraint

Displace-

merit

Scress

on

plate

element

T 1 AT

0. 477630E-03 0.639000E-04

O. 491283E 02

O. 404290E 02

O. 342734E 02

0. 503317E 02

O. 621425E 02

O. 678413E 02

0. 770758E 02

0. 836097E 02

0.927545E 02

O. I02907E 03

0.442618E 02

O. 330396E 02

0.426660E 02

O. 559439E 02

0.635225E 02

O. 696483E 02

O. 779308E 02

0.855177E 02

0.918679E 02

O. I04643E 03

O. 333483E 02

0.442882E 02

0. 524977E 02

0. 585271E 02

0. 675386E 02

O. 754992E 02

0. 790451E 02

0.812659E 02

0.898351E 02

0. 384293E 02

0. 448857E 02

0.460618E 02

0. 560286E 02

O. 707552E 02

0.683784E 02

0.671276E 02

0.650156E 02

O. 383067E 02

0.405797E 02

0.478572E 02

0.601870E 02

0. 678691E 02

0.641141E 02

0. 627188E 02

O. 644332E 02

0. 430485E 02

0.515961E 02

O. 591465E 02

0.578430E Ol

0.507150E 01

0.372610E Ol

0.447630E 01

0.461810E 01

0.443210E 01

0.449140E 01

0.495960E Ol

0.584630E 01

0.711600E 01

0.537550E 01

0.431410E 01

0.419350E 01

0.465430E Ol

0.455650E 01

0.433590E Ol

0.472420E 01

0.538780E 01

0.632470E 01

0. 754400E 01

0.433940E 01

0.420580E 01

0.465790E 01

0. 449740E Ol

0.425440E Ol

0.478350E 01

0.548130E 01

0. 589370E 01

0.702590E Ol

0.410100E Ol

0.440390E 01

0.419510E 01

0.402320E 01

0.433660E 01

O. 534000E Ol

0. 552770E Ol

0.500740E Ol

0.418290E 01

0. 386490E 01

0.365830E 01

0.366820E Ol

0.406780E 01

0.489870E 01

0. 567790E 01

0.646 IOOE 01

0.400810E 01

0.377600E 01

0.367630E Ol

6T

O. 623050E-04

0.582313E Ol

O. 503782E Ol

O. 177060E 02

0.458831E 01

0.471064E 01

0.432144E Ol

O. 199737E 02

O. 497955E 01

O. 588408E 01

0. 737359E 01

O. 548079E 01

0.637451E 01

0.430971E 01

O. 478683E Ol

0.462942E 01

-0. 271092E Ol

0.474039E 01

O. 544000E 01

0.636981E Ol

O. 740095E Ol

0.476834E Ol

O. 457845E Ol

0.472717E Ol

0.471797E Ol

-0.417631E Ol

0.486093E Ol

O. 561322E Ol

0. 581995E Ol

0.873431E Ol

0.885964E Ol

0.716955E Ol

O. I03754E Ol

O. 854381E Ol

O. 161278E 02

0.606585E Ol

0.663759E Ol

O. 508216E 01

0.787511E Ol

O. 742288E Ol

O. 292377E 01

-0. 216160E Ol

0. 122838E 02

O. 520101E Ol

O. 602441E 01

O. 648722E Ol

0.368377E Ol

O. 362389E 01

O. 350028E 01

(%)

97.5

-100.7

99.3

475.2*

102.5

102.0

97.5

444.7*

I00.4

100.6

103.6

102.0

147.8"

102.8

102.8

101.6

-- *

100.3

I01.0

100.7

98.1

109.9"

108.9

101.5

104.9

I01.6

102.4

98.7

124.3

216.0"

162.8"

24.7*

212.4"

371.9"

113.6"

120.1"

101.5"

188.3"

192.1"

79.9*

302.0*

106.2"

106.1"

100.4"

91.9

96.0

95.2
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Table 5.2 Continued

i12 _

114 !

If6

[18 !

t20 '
1281

130

132

134

t36

[38

140

149

151

153

155

157

159

169

171

173

175

177

179

190

192

194

196

198

2O0

212

214

216

218

220

233

235

237

239

253

255

257

259

274

276

278

280

296

298

3OO

317

319

0.622421E

0.560415E

0.572092E

0.592701E

0.653244E

0.551221E

0.582628E

0.591416E

0.480085E

0.470503E

0.497518E

0.568233E

0.555054E

0.532211E

0.555484E

0.369989E

0.351428E

0.379014E

0.520786E

0.488632E

0.563002E

0.327010E

0.233698E

0.232539E

0.452829E

0.613298E

0.477629E

0.320130E

0.270660E

0.348251E

0.676872E

0.601710K

0.533533E

0.552964E

0.657858E

0.814806E

0.827060E

0.900454E

0.100982E

0.820499E

0.795086E

0.900398E

0.I01662E

0.673588E

0.612991E

0.648550E

0.753538E

0.456086E

0.425431E

0.493462E

0.297704E

0.278978E

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

O2

02

02

02

0.352580E

0.412800E

0.481830E

O.544530E

0.629920E

0.377870E

0.362570E

0.278540E

0.382730E

0.454920E

0.501480E

0.578470E

0.365210E

0.291820E

0.199770E

0.406490E

0.469500E

0.517780E Ol

0.347340E 01

0.212230E Ol

0.986300E O0

0.319860E Ol

0.438970E Ol

0.498540E Ol

0.225560E Ol

-0.287800E O0

0.850300E O0

02 0.162980E Ol

02 0.193730E Ol

02 0.246970E Ol

02 -0.I08820E 01

02 -0.525400E O0

02 -0.389700E O0

02 -0.327000E-01

02 0.754300E O0

02 -0.165530E Ol

02 -O.150610E Ol

02 -0.I02090E Ol

03 0.318000E O0

02 -0.201040E 01

02 -0.190830E Ol

02 -0.173330E 01

03 -0.176000E Ol

02 -0.176060E Ol

02 -0.143850E 01

02 -0.I19740E Ol

02 -0.118920E 01

02 -0.122760E 01

02 -0.898100E O0

02 -0.807200E O0

02 -0.103000E Ol

02 -0.811600E O0

Ol 0.475202E

Ol 0.387695E

Ol 0.468990E

Ol 0.499216E

01 0.866491E

01 0.369667E

01 0.358268E

Ol 0.I12804E

Ol 0.399422E

Ol 0.430866E

Ol 0.460304E

Ol 0.579408E

Ol 0.360337E

01 0.279312E

01 0.762408E

01 0.399285E

01 0.441864E

0.509654E

0.339814E

0.190147E

0.507594E

0.293605E

0.420271E

0.481146E

0.184213E

0.887028E

0.620269E

0.133533E

0.212358E

0.i46149E

0.435962E

-0.575288E

-0.584231E

0.301678E

-0.214753E

0.137769E

0. I19062E

-0.458401E

0.948578E

0.205777E

0.230174E

-0.137223E

-0.244327E

-0.985639E

-0.146266E

-0.I04803E

-0.448313E

-0.I17749E

-0.744751E

-0.121862E

-0.904167E

-0.101897E

01 134.8"

01 93.9

01 97.3

01 91.7

01 137.6

01 97.8

01 98.8

02 405.2*

01 104.4

01 94.7

01 91.8

Ol 100.2

01 98.7

Ol 95.7

01 381.6"

O1 98.2

Ol 94.1

Ol 98.4

Ol 97.8

Ol 89.6

01 515.5"

01 91.8

Ol 95.7

Ol 96.5

01 81.7

Ol - *

O0 72.9

01 81.9

01 109.6

01 59.2

Ol - *

O0 109.5

O0 149.9

O0

Ol

02 - *

01 - *

00 449.0*

O0 298.3*

02 - *

01 - *

Ol 79.2*

O1 138.8"

00 56.0

Ol lOI.7

01 87.5

Ol 377.0

Ol 95.9

O0 82.9

Ol 151.0

O0 87.8

01 125.6



155

Table 5.2 Continued

Stress

oQ

beam

element

Compli-

ance

Elgen-
value

1

2

3

4

21

22

23

24

25

26

27

28

29

3O

31

32

45

46

47

48

49

5O

51

52

53

54

55

56

57

58

59

60

73

74

75

76

77

78

79

80

0.218492E

0.18U00E

0.145541E

0.149387E

0.121912E

0.846174E

0.160415E

0.154422E

0.143154E

0.128072E

0.365447E

0.360604E

0.351645E

0.340254E

0.305855E

0.240941E

0.172152E

0,979993E

0.175804E

-0.693616E

-O.162326E

-0.259741E

0.106547E

0.901367E

0.721165E

0.504898E

0.245700E

-0.547858E

-0.388750E

-0.743968E

-0.904410E

-0.740261E

-0.573423E

-0.423233E

02 -0.115130E

02 -0.120480E

02 -0.155840E

02 -0.151100E

02 -0.132390E

01 -0.843500E

03 0.195140E

03 0.188550E

03 0.176080E

03 0.159270E

03 0.237300E

03 0.231890E

03 0.221520E

03 0.207440E

03 0.191690E

03 0.178240E

03 0.164840E

02 0.151517E

02 0.138385E

02 0.125603E

03 0.I13270E

03 0.I01420E

03 0.141790E

02 0.130483E

02 0.I19729E

02 0.I09112E

02 0.982590E

Ol 0.869336E

02 0.750090E

02 0.623580E

02 0,456870E

02 0.331260E

02 0.219220E

02 0.125110E

Ol

Ol

Ol

Ol

01

O0

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

Ol

Ol

Ol

Ol

Ol

Ol

01

01

-0.298151E

-0.199104E

-0.I19784E

-0.478911E

-0.270690E

-0.207475E

-0.150720E

-0. I01488E

-0.606386E

-0.288523E

-0.713844E

0.214113E

0.977450E-03

0.121510E 04

02 0.510400E O0

02 -0.710000E-02

02 -0.265500E O0

Ol -0.214640E O0

03 0.842100E Ol

03 0.614300E Ol

03 0.416000E Ol

03 0.253470E 01

02 0.129380E Ol

02 0.439900E O0

Ol -0.277000E-01

Ol -0. I03470E O0

0. II0150E-03

-0.222000E 02

-0.I04685E Ol

-0.139737E Ol

-0.164168E 01

-0.174274E Ol

-0.149064E Ol

-0.938432E O0

0.194400E 02 99.6

0.187802E 02 99.6

0.174085E 02 98.9

0.156410E 02 98.2

0.236590E 02 99.7

0.231229E 02 99.7

0.219809E 02 99.2

0.208615E 02 100.6

0.193528E 02 101.0

0.179433E 02 100.7

0.164213E 02 99.6

0.150810E 02 99.5

0.137983E 02 99.7

0.125568E 02 100.0

0.112652E 02 99.5

0.I04919E 02 103.5

0.139345E 02 98.3

0.131937E 02 101.1

0.120849E 02 100.9

0.110551E 02 101.3

0.999583E 01 101.7

0o885654E 01 101.9

0.747266E 01 99.6

0.604437E Ol 96.9

0.438521E 01 96.0

0.350239E 0! 105.7

0.225943E 01 103.1

0.129765E Ol 103.7

0.562454E O0 110.2

0.I18288E O0

0.289746E O0 -

0.235848E 01

0.885263E Ol 105.1

0.642310E 01 104.6

0.422678E 01 101.6

0.256681E 01 101.3

0.134459E Ol 103.9

0.602348E 00 136.9

0.630721E O0

0.268880E 01

0.I01664E-03 92.3

0.211944E 02 95.5
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in Section 4.6, to treat a stress constraint that is defined on an

element adjacent to the interface, the argument presented in Section 4.6

is applied to calculate the sensitivity coefficients.

As suggested in previous sections, the non-conforming method for

plate analysis is used, which allows displacement continuity at the

element boundary and nodal points, and slope continuity at the nodal

points between elements. Since the normal slopes at the element

boundaries must be continuous (interface condition), the average values

of normal slopes at the component boundaries (interface) between

components are taken to evaluate shape design sensitivity coefficients.

A numerical test shows that this averaging scheme yields better

sensitivity results. As discussed in Section 4.6, to evaluate the third

derivatives of state variable, an extrapolation scheme is used.

Results in Table5.2 show reasonably good agreement between

sensitivity prediction and constraint reevaluation after design

modification, for all constraints except a few stress constraints

defined on plate and beam elements. Note that some of the sensitivities

for the stress constraints on plate elements adjacent to the interface

marked by * in Table 5.2 are poor (even opposite sign in some

constraints). The reason for poor sensitivity results for these

constraints is that the adjoint load is acting at the interface (element

boundary) and hence the non-continulty of normal slopes (even taking

average of these values) degrades sensitivity accuracy. However, for

stress constraints defined on beam elements adjacent to the interface,

since the slope is continuous at the nodal points between components,
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good sensitivity agreement is obtained, as shown in Table 5.2. For a

few stress constraints on plate and beam elements near free boundary,

since the amount of change of constraint values are relatively small,

the sensitivity agreement is poor, due to approximation error.

Numerical tests show that these poor sensitivities can be improved by a

larger perturbation of design, within the range of linear approxi-

tion. To improve the poor shape design sensitivity agreement for the

stress constraints defined on plate and beam elements adjacent to

interfaces or free boundaries, which is one of the most numerically

difficult tasks in built-up structure optimization, a conforming method

for plate analysis, as discussed in Section 4.2.2, or the boundary

element method for treating elements close to component boundaries is

suggested.

Once acceptable design sensitivity coefficients are obtained, one

can directly ut_llze a nonllnear programming method to obtain an optimum

design, without any appreciable difficulty. With the design sensitivity

coefficients obtained, the llnearizatlon method [105] is applied to

obtain the optimum distribution of design variables for the present

problem, with a fixed domain (Fig. 5.3). Minimum weight design of the

entire structure subject to displacement, stress on plate and beam

elements, and natural frequency constraints is considered. The initial

design (b0) is selected as to ffi0.I in., d0 ffid0 ffi0.15 in.,
^

h0 = h0 = 0.5 in., and A0 = 0.! in., with the lower and upper bound

b£ ffi0.8 b0 and bu ffi1.2h0, respectively, with ratio

R ffibu/b _ ffi1.5. Allowable bounds for each constraint are given
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as: za = 0.0006 in., ca = 100 psi, c_ = 400 psi, and a = 800P

(rad/sec) 2 .

The solution in Table 5.3 shows the optimum design for the present

problem, where one quarter of design variables appear, due to symmetry.

The cost is reduced from 41.68 to 32.40, which is 22.3% reduction, while

the L-2 norm of the direction vector as a convergence criteria, is

reduced from 34.69 to 0.791 x 10-3 after 17 iterations.

Reviewing the history of iterative design, the cross-sectlonal area

of truss member and the beam width tend to approach the lower bounds in

the early iterations. When the beam height is significantly dominant to

the plate thickness, the plate thickness tends to go to the lower bound

in the early stage, in which the optimum solution is obtained by

controlling the beam height. For this case, the outer beams that are

close to the free edges have the characteristic of a build up in beam

height, particularly conspicuous around the middle portion of the beam.

Also, one can notice that whenever the ratio of upper and lower

bounds of design variables becomes smaller, the smoother distribution of

design variables is expected. However, if the beam height is not

significantly large compared to plate thickness, the optimum design may

be obtained by controlling both plate thickness and beam height.
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Table 5.3 Optimal Design Results for Truss-Beam-Plate

Built-Up Structure

Plate

thick-

ness

x 0.1)

Initial

(1) 1.0000

(2) -

(3) -

(4) -

(5) -

(11)

(]2)
(13)
(14)
(15)
(21)
(22)

(23)

(24)

(25)
(31)

(32)

(33)

(34)

(35)
(41) -
(42) -

(43) -

(44) -

(45) 1.0000

Final

O. 80008

O. 80009

0.80010

0.80010

0.80010

O. 80009

0.80009

0 •80009

O. 80009

0.80009

0.800 I0

O. 80009

0.80009

O. 80009

0.80008

0.80010

0. 80009

0.80009

0.80010

O. 80005

0.80010

0.80009

0. 80008

0.80005

0.80009

Initial

(I) O. 1500

(2) -

(3) -
(4)

Beam (5)

width (ii)

(12)

(13) -

(14) -
(15) o.15oo

(1) 0.5000

(2) -
(3) -
(4)

Beam (5)

height (II)

(12)

(13) -
(14) -
(15) 0.5000

(1) I. 0000

Truss (2) -

area (3) -

(x 0.I) (4) 1.0000

Final

0. 12000

O. 12000

0.12000

O. 12001

O. 12001

O. 12000
O. 12000

O. 12000

0.12000

0.12000

0. 40005

0.43199

0. 40005

0.50015

0.59996

0.40005

O. 40004

O. 40004

O. 40008

0.40986.....

0. 80009

0.80009

0. 80009

0.80009
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CHAPTER6

DISCUSSIONANDCONCLUSIONS

Methods of design sensitivity analysis and optimization of built-up

structures have been studied using distributed parameter structural

theory. The studies clearly demonstrate the advantage of the

variational formulation of boundary-value problems in design sensitivity

analysis. The material derivative idea from continuum mechanics is

employed for shape variation analysis. A unified method of shape design

sensitivity analysis is developed, in which the shape design sensitivity

coefficients are easily obtained by imposing boundary and interface

conditions in built-up structure problems, without carrying out the

complete procedure of shape design sensitivity analysis. An Iterative

optimization algorithm is then utilized to obtain an optimum solution.

This procedure is applied for optimal design of a truss-beam-plate

built-up structure, as a numerical feasibility study. In view of the

theory and results presented, there should be no fundamental

difficulties in applying the procedure to other classes of built-up

structural optimization problems.

Numerical experimentation with the procedure developed shows that

the inherent approximation error caused by using distributed parameter

structural theory instead of matrlx/flnlte element method for design

sensitivity calculation is not significant, but that the choice of

numerical methods for calculation, especially the finite element method,
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plays a crucial role in the procedure's success. This is mainly due to

the fact that one obtains relatively poor design sensitivity results for

stress constraints near the component boundary (interface) where

interface or boundary conditions are imposed.

Further development and application of the present design method

for built-up structure optimization may be envisioned in several

fields. The present study on optimization of relatively simple geometry

under general constraints clearly indicates the feasibility of extending

the present optimal design problem for more complex built-up structures,

including curved beam and shell components, where the configurations of

combined structures are more complex and constraints and loading

conditions are more varied.
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